ComeBack!: a Refactoring-Based Tool for
Binary-Compatible Framework Upgrade *

llie Savga
Institut fir Software- und
Multimediatechologie
Technische Universitat
Dresden, Germany
is13@inf.tu-dresden.de

ABSTRACT

Maintenance of a software framework often requires restruc-
turing its API (refactoring). Upon framework upgrade struc-
tural API changes may invalidate existing plugins—modules
that used one of its previous versions. To preserve plugins,
we use refactoring trace to automatically create an adap-
tation layer that translates between plugins and the frame-
work. For each encountered refactoring we formally define
a comeback—a refactoring to construct adapters. Given an
ordered set of refactorings occured between two framework
versions our tool ComeBack! executes the corresponding
comebacks and yields the adaptation layer.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques— Object-oriented programming; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
Restructuring, reverse engineering, and reengineering; D.2.13
[Software Engineering]: Reusable Software—Reusable li-
braries

General Terms

Experimentation, Design, Languages

Keywords

Maintenance, adaptation, refactoring, software framework

1. REFACTORING-BASED ADAPTATION

A software framework [7] may evolve considerably due to
new or changing requirements, bug fixing, or quality im-
provement. As a consequence, existing modules (plugins)

*The presented work is funded by the Sichsische Aufbau-
bank, project number 11072/1725.

Copyright is held by the author/owner(s).
ICSE’08, May 10-18, 2008, Leipzig, Germany.
ACM 978-1-60558-079-1/08/05.

Michael Rudolf
Institut fur Software- und
Multimediatechologie
Technische Universitat
Dresden, Germany
s0600108@mail.inf.tu-
dresden.de

Sebastian Gotz
Institut fir Software- und
Multimediatechologie
Technische Universitat
Dresden, Germany
sebastian.goetz@mail.inf.tu-

dresden.de

that use the framework may become invalid. Either plu-
gin developers are forced to manually adapt their plugins or
framework maintainers need to write update patches. Both
tasks are usually expensive and error-prone. When the ap-
plication has been delivered to a customer, it even may be
undesirable to require plugin recompilation.

We want to achieve binary compatibility of framework
plugins—existing plugins link and run with new framework
releases without recompiling [6]. We use the information
about framework refactorings — behavior-preserving source
transformations — to automate the adaptation. According
to the empirical study of Dig and Johnson [4], who investi-
gated the evolution of five big frameworks, most (from 81%
to 97%) of the application-breaking changes were comprised
by refactorings. We treat a refactoring operator as a spec-
ification of a syntactic change to create the corresponding
adapters (Fig. 1). The adapters shield the plugins by repre-
senting the public types of the old version, while delegating
to the new version. Our adapter generation is not limited to
two consecutive framework versions; adapters can be gener-
ated for any previous API version. Moreover, the adapted
plugins of different versions may co-exist. In addition, the
adapters are not stacked on top of each other; each adapta-
tion layer delegates directly to the latest framework version.

Comebacks For each supported refactoring we formally
define a comeback—a behavior-preserving transformation,
which defines how a compensating adapter is constructed.
That is, we create an adaptation-oriented pattern problem-
solution library of transformations, where a problem pattern
is the occurrence of a component refactoring and its solution

¢ —— ——| Refactoring History
promeenees { Generator } F
: | 3

AL £ Al

j B .

Py P, Ps

time

Figure 1: Refactoring-based plugin adaptation. The
last framework version F3 is deployed to the user.
While new plugins (P;) are developed against the
latest version, existing ones (P, and P,) are pre-
served by creating adapter layers AL; and ALs.

Framework
Binaries

parsingI

Framework
Fact Base

ComeBack!

v
Comeback | Prolog | Refactoring
Library

Engine History

v
Adapter
Fact Base

pretty [printing

Adapter
Layer

Figure 2: General Architecture of ComeBack!.

is the corresponding comeback (refactoring on adapters).
Technically, a comeback is realized in terms of refactoring
operators executed on adapters. For some refactorings, the
corresponding comebacks are simple and implemented using
a single refactoring. For example, the comeback that cor-
responds to the refactoring RenameClass(name, newName)
consists of a refactoring RenameClass (newName, name), which
renames the adapter to the old name. The comebacks of
other refactorings consist of sequences of refactorings. For
instance, the comeback of PushDownMethod is defined by the
DeleteMethod and AddMethod refactoring operators, the se-
quential execution of which effectively moves (pushes up)
the method between adapters. Moreover, complex come-
backs may be defined by composing other, more primitive
comebacks. This is the case for the comeback of Extract-
Subclass defined by combining the comebacks of PushDown-
Method and AddClass. To ensure the validity of comeback
specifications, we formally ground their definitions [3].
Tool Validation Figure 2 shows the main modules of our
adaptation tool ComeBack!. For a number of common refac-
torings we provide a comeback library consisting of come-
back transformations specified as Prolog rules. Given the
latest framework binaries, the information about the API
types (type and method names, method signatures, inher-
itance relations) is parsed into a Prolog fact base. After
examining the history of framework refactorings, the corre-
sponding comebacks are loaded into the engine and executed
on the fact base as described in the previous section. Once
all comebacks have been executed, the fact base contains
all the necessary information for generating adapters (it de-
scribes the adapters) and is serialized to the adapters bi-
naries. The serialization logic encapsulates implementation-
specific decisions, such as special treatment of constructors
and of object schizophrenia implied by delegation.
Currently we are supporting Java and .NET binaries, for
which we developed the corresponding Prolog/Java and Pro-
log/CIL parsers and pretty printers. Our support for NET
is motivated by the requirements of one of our industrial
partners and for Java by a plethora of open source frame-
works available for case studies. We perform now a case
study with a medium-size framework called SalesPoint [2]
developed at our department. It serves as an excellent case
study for our technology, because developers were not re-
stricted in changing its API and because a number of clients
(student exercises) for each major version exist. Along with
the extended ComeBack! functionality we also aim for bench-

marking the overhead implied by delegation and the tool’s
recall—the percentage of adapted changes from the overall
number of detected ones. The tool’s sources and documen-
tation as well as the relevant publications are on [1].

Currently we adapt the following refactorings: Rename-
Method, RenameClass, AddMethod, AddClass, MoveMethod,
PullUpMethod, PushDownMethod, Extractclass, Extract-
Superclass, ExtractInterface, ExtractMethod, Extract-
Subclass. Because we assume, that all API fields are en-
capsulated, which is a general requirement in our project,
support for field refactorings is implied by the adaptation of
the corresponding accessor methods.

Related Work In their binary adapter tool ReBA Dig et
al. [5] define, for each original refactoring, a compensating
refactoring that inlines the corresponding code directly in
the library. For example, for RenameMethod (01dMd, newMd)
compensates AddMethod(oldMd) inserting the method that
delegates to newMd. Given an old library and a refactoring
trace, they execute the compensating refactorings on the old
library in the same order as the original refactorings. Effec-
tively, instead of putting a wrapper around the library, they
give it two (the old and the new) interfaces. Similarly to our
approach, the object identities are preserved and the side-by-
side execution is supported. As they do not use delegation,
the performance penalties are reported to be less then 1%.
Moreover, having access to the old implementation they re-
cover deleted methods. However, their adaptation does not
handle refactorings contradicting each other in the scope of
a class (e.g. deleting a method M and then renaming an-
other one to M). Moreover, ReBA is Java-centric, cannot be
re-used for other languages and supports only several refac-
torings (e.g., no interface refactorings). Last, and most im-
portant, the compensating refactorings are ad hoc defined,
implementation-specific, and not formally validated.

2. REFERENCES

[1] ComeBack! homepage. http://comeback.sf .net/.

[2] SalesPoint homepage. http://www-st.inf.
tu-dresden.de/SalesPoint/v3.1/index.html.

[3] I. Savga and M. Rudolf. Refactoring-based adaptation
for binary compatiblity in evolving frameworks. In
GPCE’07: Proceedings of the Sizth International
Conference on Generative Programming and
Component Engineering, Salzburg, Austria, October
2007.

[4] D. Dig and R. Johnson. The role of refactorings in API
evolution. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance
(ICSM’05), pages 389-398, Washington, DC, USA,
2005. IEEE Computer Society.

[5] D. Dig, S. Negara, V. Mohindra, and R. Johnson.
ReBA: Refactoring-aware binary adaptation of evolving
libraries. In ICSE’08: International Conference on
Software Engineering, May 2008.

[6] I. R. Forman, M. H. Conner, S. H. Danforth, and L. K.
Raper. Release-to-release binary compatibility in SOM.
In OOPSLA ’95: Proceedings of the tenth annual
conference on Object-oriented programming systems,
languages, and applications, pages 426-438, New York,
NY, USA, 1995. ACM Press.

[7] R. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2):22-35,
June 1988.

