
Bachelor’s Thesis

∆-Guided Plugin Adaptation in .NET

submitted by

Michael Rudolf

born 11.05.1983 in Berlin

Technische Universität Dresden

Fakultät Informatik
Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

Supervisor: M.Sc. Ilie Savga
Professor: Dr. rer. nat. habil. Uwe Aßmann

Submitted September 27, 2006

2

Contents

List of Figures 5

1 Introduction 7
1.1 Motivation . 7
1.2 Libraries, Frameworks, and Plugins 8
1.3 Refactoring and Plugin Adaptation 8
1.4 The .NET Environment . 9
1.5 Outline . 10

2 Categorization of Refactorings 11
2.1 Classification of Changes . 11
2.2 Refactorings in Frameworks . 11

3 Specification of Changesets 15
3.1 Required Refactoring Information 15
3.2 Change Definition Language . 16

4 Approaches for Plugin Adaptation 19
4.1 Remote Procedure Calls and the Dynamic Proxy Pattern 19

4.1.1 Concept . 19
4.1.2 Evaluation . 21

4.2 Aspect-Oriented Programming 22
4.2.1 Concept . 22
4.2.2 Evaluation . 23

5 Class and Interface Adapters 25
5.1 General Adaptation Architecture 25
5.2 Adapter Concept . 26
5.3 Prototype . 31
5.4 Testing the Prototype . 33
5.5 Implications . 35

6 Future Work 37
6.1 Support for more Language Features 37
6.2 Optimizing the Prototype . 38
6.3 Automatic Changeset Generation 38
6.4 Validating Plugin Conformance 38

Abbreviations 41

Bibliography 43

3

4 CONTENTS

List of Figures

1.1 Ways of Interaction of a Plugin with a Framework (UML diagram) 8

2.1 Classification of Framework Changes 12

3.1 Example XML Document Type Definition 17

3.2 Example XML Changeset Specification 17

4.1 Communication Structure of a Remote Procedure Call 20

4.2 The Dynamic Proxy Pattern (UML diagram) 21

4.3 Aspect-Oriented Programming Workflow 22

5.1 Plugin Adaptation Workflow . 26

5.2 Runtime System Architecture showing the Evolution of the Frame-
work . 27

5.3 Class Adapter annotated with Roles (UML diagram) 28

5.4 Forward Interface Adapter annotated with Roles (UML diagram) 29

5.5 Backward Interface Adapter annotated with Roles (UML diagram) 29

5.6 Type Mappings for Refactoring Classes 30

5.7 Input/Output Architecture of the Prototype 31

5.8 Structural Architecture of the Prototype 32

5.9 Adapter Generation Algorithm in Pseudocode 32

5.10 Backward Metadata Transformation using an Ordered Changeset 33

5

6 LIST OF FIGURES

Chapter 1

Introduction

When a framework evolves, changes to its API may occur. A new framework
release may then invalidate existing plugins – modules, which used a previous
framework version. These plugins have to be manually adapted or, at least,
recompiled to work with the new release. To avoid this effect, we provide a new
technique for API binary compatibility, which permits existing plugins to link
and run with a new framework release without recompiling. This is achieved by
carefully defining the changes that can be applied to an API, recording these
changes upon their occurrence and generating adaptation code out of change
specifications. The adaptation is performed at the framework site and is thus
transparent for plugins.

1.1 Motivation

This thesis has been written in the course of a collaboration project of the Tech-
nical University of Dresden and Comarch [Com], an international IT business
solution company from Cracow, Poland. Comarch is developing an Enterprise
Resource Planning (ERP) System called B21. It will integrate and automate
many of the business practices associated with the operations or production
aspects of a company, such as sales and delivery, billing and production, inven-
tory and human resource management. The framework will be developed for
the .NET platform, and it should be extended by plugins, which were provided
by third-parties. However, there would be regular releases of new framework
versions, which would have meant that each time a new version was installed
at a customer site, all third-party plugins had to be updated to work with the
new framework version. In order to avoid the expenses and the machinery nec-
essary on every version update, a technique was needed that could ensure the
backward-compatibility of the new framework version with the old plugins. Ef-
fectively, the framework should be allowed to evolve, while all plugins developed
against older versions of the framework should remain usable without the need
of changing or even recompiling them. Thus, newer framework versions should
be compatible with older plugins.

1It is a pivot name, the system will get the actual name upon its first release.

7

8 CHAPTER 1. INTRODUCTION

1.2 Libraries, Frameworks, and Plugins

Frameworks are building blocks for applications and other frameworks. They
model a specific domain or an important aspect thereof [Rie00]. Object-oriented
frameworks are designed and implemented along the principles of object orien-
tation, they promote encapsulation and reusability. The interaction with its
clients takes place at well-defined boundaries and serves as a means of classi-
fication of frameworks. In [JF88] frameworks, whose classes can be used as-is
using object instantiation and delegation, are referred to as blackbox frameworks.
If a framework contains abstract classes that have to be subclassed in order to
be used, it is called whitebox framework. However, the majority of real-world
frameworks combine both ways of usage and are therefore called graybox frame-
works. The parts of a framework, that can be used and/or extended by clients,
are called extension points.

Respectively, framework clients, which are either frameworks themselves or
applications, are either called use-clients or extension clients, depending on the
type of interaction with the framework. These clients instantiate the framework
and usually consist of several classes that are organized in modules, referred to as
plugins. Figure 1.1 shows ways of interaction between plugins and frameworks.

Software libraries are, similar to frameworks, also often-used software arti-
facts. However, there is an important difference between the two. Libraries
merely export a specific functionality to be used by applications, they do not
provide a scaffolding for them. Therefore, they are typically a lot less complex
than frameworks. In contrast to frameworks, libraries only represent a very
limited part of a domain and can rarely be extended.

Plugin Framework
«calls»

(a) Blackbox Framework

Framework

Plugin

(b)
Whitebox Framework

Figure 1.1: Ways of Interaction of a Plugin with a Framework (UML diagram)

1.3 Refactoring and Plugin Adaptation

As software evolves, that is, flaws are corrected and functionality is modified,
one can often observe a decay in code quality [Leh96]. This is due to the fact
that the applied changes have clearly not been part of the software design and
they might have been introduced only to accomplish short-term goals, some-
times even without full understanding of the code design. According to Beck,
refactoring is the opposite of this practice [FBB+99]. The term was originally
coined in the Smalltalk community and describes a change made to the internal
structure of software to make it easier to understand and cheaper to modify

1.4. THE .NET ENVIRONMENT 9

without changing its observable behavior. Thus, refactoring software means to
improve on legibility of code in a controlled manner. By means of small steps
that are accompanied by tests to ensure that the behavior has not changed, the
code is cleaned up.

This process is essential for the evolution of frameworks, because due to
their complexity they are often developed jointly by many people, who have to
understand each other’s code. Furthermore, the larger a system is, the more
flaws it will contain [Tan01, p. 617]. And, finally, no human-created software is
perfect from the first instant on.

In order to be backward-compatible to plugins designed for an older de-
velopment stage of a framework, the latter has not only to expose a consistent
behavior to its clients, but it also needs to maintain its Application Programming
Interface (API) and, consequently, its Application Binary Interface (ABI). The
API is a design- and compile-time view on all the types and methods a frame-
work provides to its clients. The ABI, on the other hand, refers to the runtime
environment. In the original sense, an ABI consists of programming conventions
that applications have to follow to run under an operating system. Therefore,
it includes a set of system calls and the technique to invoke the system calls,
as well as rules about the usage of memory addresses and machine registers
[Lev99]. However, in the context of frameworks ABI refers to the framework
types that can be openly used by plugins. In order for a plugin to be correctly
loaded, all framework types it depends on need to be available at runtime.

However, these restrictions rather impede the fruitful evolution of a frame-
work. Therefore, this thesis presents a technique enabling the maturing of
a framework API through a set of refactorings, while preserving backwards-
compatibility to its plugins.

1.4 The .NET Environment

Microsoft .NET is a platform consisting of a runtime environment, called the
Common Language Runtime (CLR), and a large class library with extensive
support for diverse standards. The CLR specification itself, called Common
Language Infrastructure (CLI), has been submitted as a standard to the Eu-
ropean association for standardizing information and communication systems
(Ecma International, formerly known as ECMA – European Computer Man-
ufacturers Association) [ECM02]. It takes the same place in the system’s ar-
chitecture as does the Java Virtual Machine in a Java environment. However,
the CLR was not designed with ubiquitous platform independence in mind,
its purpose is merely to provide memory management and exception handling,
guarantee security, and execute a .NET program on the underlying Windows
operating system and hardware. Nevertheless, there are efforts to provide the
same functionality on other operating systems as well.

In contrast to Java, which was in its first incarnation designed to be a
runtime-interpreted language, .NET does not offer anything similar. Instead,
every .NET program is just-in-time-compiled to machine code, which will then
be executed by the underlying hardware. The CLR supports a wide variety
of programming languages, although not every single concept of each of them
might be implemented [MG00]. This is done by compiling the source code
into an assembler-like intermediate representation called Common Intermediate

10 CHAPTER 1. INTRODUCTION

Language (CIL). Therefore, the smallest entities .NET software is made of are
called assemblies and take the form of .dll or .exe files. Similar to Java bytecode
CIL contains every information necessary to run the program, but in addition to
that an assembly provides information about the types defined in the assembly
and the types and their containing assemblies required by the assembly together
with versioning information.

Java has the notion of native code that can be called from within Java code.
A very similar approach is taken by .NET: the code that is compiled into IL
code, put into assemblies, and executed by the CLR is called managed code,
while platform-specific code is referred to as being unmanaged. The latter will
directly be run by the operating system without being able to make use of the
services provided by .NET, such as automatic memory management through the
help of garbage collection, security protocols enforcement, exception handling,
etc. Microsoft has even created derivative programming languages from well-
known languages directly incorporating these features, like C#, VB.NET, and
ASP.NET.

1.5 Outline

This thesis presents a technique for the adaptation of plugins in object-oriented
frameworks in order to compensate for refactoring changes. This first chapter
provided an introduction to the terminology of frameworks, refactorings, and the
.NET environment. Chapter 2 supplies an overview of the changes applicable
to object-oriented frameworks and manageable using adaptation, while chapter
3 outlines a means of specifying them for computerized processing. The next
chapter then elaborates on the different approaches for plugin adaptation that
were investigated, and chapter 5 explains another approach in detail: class and
interface adapters. The last chapter discusses possible improvements and further
research needs.

Chapter 2

Categorization of
Refactorings

2.1 Classification of Changes

Plugin adaptation for object-oriented frameworks can only be carried out suc-
cessfully, if the evolution process of the framework is constrained to a con-
trollable set of changes. Therefore, this chapter is dedicated to defining basic
criteria fundamental to plugin adaptation and a set of changes adhering to the
former.

Dig and Johnson [DJ05] classify changes by their impact on a client pro-
gram’s ability to run with the changed framework into non-breaking and break-
ing changes. Non-breaking means, that existing clients will work as before
without recompilation. By “work as before” we mean that the set of interesting
observable outputs for a given input is not changed.1 Non-breaking changes
are not further regarded, because they do not require plugins to be adapted. A
change “breaks” a client, if the latter cannot continue to work. The client fails to
recompile, link or run with a new framework version. By “fail to run” we mean
that the set of interesting observable outputs change. Breaking changes can be
further subdivided into semantic-preserving and semantic-modifying changes.
The latter group is not investigated further here, because of the complexity
and amount of information necessary to cope with them in plugin adaptation.
Figure 2.1 shows this classification of changes.

2.2 Refactorings in Frameworks

When classifying framework changes in the context of plugin adaptation, only
those changes were of interest to us, that have an impact on framework parts
available to plugins. Changes to the internal framework classes do not require
plugin adaptation (unless they modify the framework’s behavior, however, we
will not investigate this type of change further in this thesis). Changes to a

1We do not consider the type of input, though (e.g. values, representing time or memory
allocation).

11

12 CHAPTER 2. CATEGORIZATION OF REFACTORINGS

Semantic−
modifying

Semantic−
preserving

Changes

Non−breaking Breaking

Figure 2.1: Classification of Framework Changes

framework extension point, in contrast, might alter entities seen and used by
framework clients. Thus, they are changing the framework’s API.

There are many types of changes that can be applied to a framework,
amongst them are bug fixes, the addition of new features2, and refactorings.
Bug fixes are most often limited to statements contained in a method, they do
not change the framework’s API. The addition of new features per se does not
do so either, it only enhances the existing API. Refactorings, however, were
basically invented for source code restructuring and thus can have a major im-
pact on a framework’s API. Moreover, according to Dig and Johnson [DJ05],
who investigated the evolution of four big frameworks, more than 85% of client-
breaking changes were refactorings. Therefore, they are the driving force behind
plugin adaptation.

Unfortunately, there is no uniform definition of refactoring throughout lit-
erature. Fowler defines a refactoring as the change of a software system in such
a way that it does not alter the external behavior of the code yet improves its
internal structure [FBB+99]. In his PhD thesis, Opdyke is a little more detailed
by stating that, given the same set of inputs, the original and the refactored pro-
gram produce the same output values, if the refactoring’s preconditions are met
[Opd92]. Roberts extends this work by providing a mathematical foundation
for the notion of semantic-preservation. He argues that a refactoring is a source
code transformation that depends on specific preconditions and guarantees a
number of postconditions to be met [Rob99]. This definition is abstract enough
to be applied to many different use contexts, e.g. real-time applications with
time constraints as pre- and postconditions. Therefore, this thesis will concen-
trate only on semantic-preserving changes, that can be specified in the manner
mentioned above. However, the actual definition of pre- and postconditions for
specific refactorings is at the moment not of interest for the plugin adaption
approach presented here.

Consequently, this thesis deals with breaking semantic-preserving changes to
object-oriented frameworks. However, this restriction does not render the work
presented hereinafter unrealistic; instead, for the sake of interoperability frame-
work development has to respect the golden rule “never to change a published
interface.” A published interface is not only public, it is also deployed and thus

2The addition of a new feature is sometimes performed using refactorings as well, e.g.
AddMethod.

2.2. REFACTORINGS IN FRAMEWORKS 13

Change class Example

Name Changes Rename Method
Signature Changes Add Parameter, Remove Parameter, Change Return

Type
Location Changes Move Field, Move Method, Pull Up Field, Pull Up

Method, Push Down Field, Push Down Method
Split Extract Class

Merge Inline Class

Table 2.1: Classes of refactorings

potentially used by clients. Plugin adaptation can leverage this restrain insofar,
as that only the framework’s functionality is to be preserved but the API is
permitted to change.

Another confinement of framework development is that information must
not be lost by the application of refactorings. However, that means that the set
of refactorings applicable to a framework is limited. In order to define this set
it is adjuvant to classify available refactorings.

The majority of refactorings as proposed in [FBB+99] can be grouped into
five classes: name changes, signature changes, location changes, splits, and
merges. Table 2.1 gives examples for the five classes. Again, only API-modifying
refactorings are of interest for plugin adaptation; refactorings like Decompose
Conditional will not break plugins and therefore do not require adaptation.

Actually, for the classification of refactorings it would suffice to differentiate
between two atomic change operations, namely add and delete. Out of these two,
every other refactoring can be constructed. These are essentially the operations
performed on the source code. However, these two basic operations lack the se-
mantics connected with each refactoring shown in table 2.1. A complex source
code modification composed of the two change types cannot be thoroughly un-
derstood to be reverted by the adapter generator. Consider for example the
Rename Method refactoring. It consist of more than just the removal of the old
method and the addition of the same method with a different name, it provides
a semantic link between the two, namely, that both are semantically the “same”
method. This information must be retained for the adapter generation process
to function.

Many complex refactorings can be built up using very basic changes. For the
sake of simplicity we suggest, that plugin adaptation should work on the atomic
refactorings in lieu of the complex one represented by the basic refactorings.
If, however, the complex change carries more semantics than “the sum of its
parts” does, the complex refactoring needs to be used, lest information about
the change is lost.

When concentrating on a specific subset of changes, namely semantic-pre-
serving breaking ones, this also has an impact on how the framework can evolve.
In order for plugin adaptation to completely cover all refactorings applied to
the framework in the course of its development, the latter has to be restricted
to employ only those changes supported by the adaptation technique. This
means, that framework developers will need to have a list of the types of changes

14 CHAPTER 2. CATEGORIZATION OF REFACTORINGS

they are allowed to use. Furthermore, the development respectively refactoring
tool employed should be customized – if possible – to refuse the application of
changes known to potentially break adaptation.

Chapter 3

Specification of Changesets

3.1 Required Refactoring Information

The information about the refactorings that have been applied to a framework
in the course of its evolution is crucial for the plugin adaptation process. That is
the reason why we call the latter ∆-guided1: only the changes made to a frame-
work need to be known in order to perform adaptation. Other approaches rely
on a complete specification of the extension point state a plugin expects. How-
ever, this is error-prone and requires more maintenance effort than using only
the change information. When recording refactoring information, specifically
three aspects are important:

1. The type of refactoring that has been applied,

2. The entity that has been changed,

3. The order in which the refactorings were made.

The first point has already been mentioned in chapter 2 and arises from the
need to understand the semantics behind a change. Without that information
no compensation for a certain refactoring is possible. In addition to that, the
location of the change must be specified, so that adaptation can be applied to
the very entity referenced. Due to the atomicity of refactorings, often several
of them are performed on a single entity in order to achieve architectural im-
provements or increase source code legibility. In that case, the order in which
the changes are applied is important. However, also changes made to different
entities are sometimes interconnected. Consider, for example, two extension
point types (types, that are part of an extension point), that are going to be
renamed. The first type Address will be renamed to AddressFactory, because
it contains the logic to create addresses rather than represent them. The second
type AddressData, that is used to store postal code, place, etc., will be renamed
to Address – the same name the first type carried before. However, refactor-
ings transforming the Address type now refer to a different entity than they
would have before the renamings. Therefore, the order of refactorings has to
be accounted for in the change specification and consequently in the adaptation
process.

1∆ is the symbol for the Greek letter Delta.

15

16 CHAPTER 3. SPECIFICATION OF CHANGESETS

If the framework development is carried out using a software configuration
management system with version control support, such as CVS, SVN, etc., the
refactoring information required can be obtained, at least partly, from that
system. However, in order to satisfy the requirement of no information loss it
might still be necessary that the developer, who applied the refactoring, inserts
information manually.

3.2 Change Definition Language

The refactoring information has to be processed during plugin adaptation, which
leads to the requirement of machine-readability. Therefore, it has to be repre-
sented appropriately. In the following we will call the language used to accom-
plish this Change Definition Language. If there is no tool support that hides
away the details of the language, it should also be human-readable, because
framework developers might need to make modifications to the information ob-
tained from a version control system, or they might have to insert additional
information to compensate for complex refactoring semantics not detectable
automatically. The best of both worlds is provided by the eXtensible Markup
Language (XML) [BPSM+04], which is in addition extensively supported by
.NET.

XML provides two means to instantiate a domain-specific data markup lan-
guage from it, Document Type Definitions (DTD) and XML Schemas [Fal04].
They are used to model the structure of the data to be described in an XML
document. Besides that, there are a couple of auxiliary technologies, such as
XPath for navigating [CD99], XQuery for querying [BCF+06], and XSLT for
transforming [Cla99] XML documents. The .NET Class Library provides im-
plementations for all these standards.

In figure 3.1 an exemplary document type definition for changeset specifi-
cations is shown. This DTD is also being used in the prototype implementa-
tion presented in chapter 5. An XML document adhering to the DTD con-
tains a single changeset element with the mandatory attributes extension,
fromVersion, and toVersion. The first attribute specifies the extension point
the changeset document refers to. The other two attributes contain the version
numbers that make up the refactoring interval. Thus, all changes that have
been applied to the specified framework extension point between the two ver-
sions will be contained in the changeset document. The changeset element
can have any number of change elements as children. They describe single
refactorings with the help of their attributes. The type attribute is required
and contains the refactoring type. The refactoring’s target type name can be
found in the targetType attribute, which is obligatory as well. It indicates
the type context, in which the change has taken place. All other attributes are
not necessary for every type of change and are therefore not obligatory. The
targetMember attribute refers to the type member the change has been applied
against, while newValue contains the change subject’s new state in a textual
representation (i.e., a type or method declaration). The accessHint attribute
should be used to provide additional information to the adapter generation pro-
cess. For example, this becomes necessary, if a new parameter has been added
to a method in an extension point type. In that case the generated adapter
needs to know which value to provide for the new parameter.

3.2. CHANGE DEFINITION LANGUAGE 17

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE changeset [

<!ELEMENT changeset (change*)>

<!ATTLIST changeset

extension CDATA #REQUIRED

fromVersion CDATA #REQUIRED

toVersion CDATA #REQUIRED

>

<!ELEMENT change EMPTY>

<!ATTLIST change

type (Rename | Move | Add | Split | Merge | AddParameter |

RemoveParameter | ChangeReturnType) #REQUIRED

targetType CDATA #REQUIRED

targetMember CDATA #IMPLIED

newValue CDATA #IMPLIED

accessHint CDATA #IMPLIED

>

]>

Figure 3.1: Example XML Document Type Definition

Figure 3.2 shows an example of a changeset specification using XML. The
changeset describes changes applied to extension point extPtA between versions
1 and 2. The first change contained is a name change of the type OrigType.
In the course of framework evolution it has been renamed to RenamedType.
The second change in the changeset document depicts a refactoring, in which
a method parameter has been removed. The method MyMethod defined in the
type RenamedType expected one integer parameter, which has been obsoleted
during framework development and was removed.

<?xml version="1.0" encoding="UTF-8"?>

<changeset extension="extPtA" fromVersion="1" toVersion="2">

<change targetType="OrigType" newValue="RenamedType" type="rename" />

<change targetType="RenamedType" targetMember="MyMethod(int)"

newValue="MyMethod()" type="removeParameter" />

...

</changeset>

Figure 3.2: Example XML Changeset Specification

18 CHAPTER 3. SPECIFICATION OF CHANGESETS

Chapter 4

Approaches for Plugin
Adaptation

This chapter introduces and evaluates several different techniques that were
investigated for the use in plugin adaptation.

4.1 Remote Procedure Calls and the Dynamic
Proxy Pattern

4.1.1 Concept

Remote Procedure Calls

Remote Procedure Calls (RPC) were originally invented to allow programs to
call procedures located on other CPUs without the necessity of message passing
or I/O [BN84]. The called procedure looks to the caller exactly as if it were
located on the same computer. The calling procedure is referred to as client,
while the remote procedure is called server. In order for that location trans-
parency to work, a library in the client’s address space and another one in the
server’s address space is required. These libraries implement the remoting of
the procedure call and the transmission of parameters (henceforth referred to
as marshalling and unmarshalling). However, RPC does not require the called
procedure to reside on a different computer than the calling one, in fact, they
can be provided by different programs on the same computer or even be part of
the same application.

Figure 4.1 shows the schematics for a remote procedure call. Communi-
cation between client and server is routed through stubs on both sides. The
server functionality is defined in an interface, against which the client has been
compiled. The client stub implements this interface to be able to mimic the
server. It accepts the client’s call, creates a message for it, marshalls the call
parameters and adds them to the message, and sends the message over the
communication line. The server stub receives the message, unmarshalls the pa-
rameters, and calls the server method described in the message. Return values
and error messages are handled equally.

19

20 CHAPTER 4. APPROACHES FOR PLUGIN ADAPTATION

Stub

StubInterface
cation
Appli−

cation
Appli−

Communication line

implements

Client Server

Figure 4.1: Communication Structure of a Remote Procedure Call

Many distributed computer systems were built upon that technique, amongst
them are the Common Object Request Broker Architecture (CORBA) [Vin97]
and Microsoft’s Distributed Component Object Model (DCOM) [BK98]. The
CORBA platform even introduced a new language for specifying service inter-
faces, the Interface Definition Language (IDL). It has enjoyed wide popularity
ever since, even far beyond CORBA. IDL is used for defining service interfaces
in a language-independent fashion; an IDL compiler can then create language-
specific counterparts (i.e., a Java interface), upon which the service and its
clients are implemented. In addition to that, the IDL compiler also generates
client and server stubs (the latter being called skeletons), which represent the
communication partners for the client and the server program respectively. The
location transparency is achieved by means of a skeleton caching and lookup
mechanism, called Object Request Broker (ORB). CORBA furthermore takes
care of converting endianness, which enables programming language and oper-
ating system independence.

In CORBA or DCOM plugin adaptation could be accomplished by placing
the adaptation logic into the client stubs. Plugins would then communicate
with the framework through these stubs. They essentially present a view of the
framework to the plugins, but this view does not necessarily have to equal the
current framework version. Plugin adaptation would be achieved, if the client
stub could present a view of the framework for the specific version required by
the plugin.

Dynamic Proxies

A slightly different technique is proxying. Here, both the client stub and the
server stub resp. skeleton are the same runtime object called proxy. Its task is
not the remoting of method calls but to provide a level of indirection between
the callee and the caller. This intermediate object can then be used to perform
logging or access control thereby implementing a certain security policy. Proxy
objects are generated dynamically at runtime. Everytime a client requests an
instance of the server object (e.g., by calling a factory method), it is not returned
the actual server instance but a proxy delegating to it. As a consequence, the

4.1. REMOTE PROCEDURE CALLS AND THE DYNAMIC PROXY PATTERN21

proxy has to provide the same interface to the callee as the server object. Figure
4.2 shows a UML diagram for the dynamic proxy pattern.

Plugin
«interface»

ExtensionPoint

method1()

ExtensionPointImpl

method1()

Proxy
delegate
method1()

Factory

createProxy():ExtensionPoint

delegate.method1();

«call»

«call»

«create»

Figure 4.2: The Dynamic Proxy Pattern (UML diagram)

The .NET platform targeted by this thesis builds on this technique to pro-
vide Inter-Process Communication (IPC) and Remote Procedure Calls. The
so-called .NET Remoting infrastructure abstracts away the details of communi-
cation and thereby offers great flexibility to its users. Therefore, it introduces
the notion of Application Domains (AppDomains), that serve as logical con-
tainers for applications or parts thereof. They isolate the parts they contain
in order to increase program stability and security. Communication between
different AppDomains can be established, and uses dynamic proxies internally.
To make use of this infrastructure, the framework as well as each plugin would
need to run in its own AppDomain. As a side effect, this architecture pattern
also provides location transparency, so that plugins would no longer need to
reside on the same computer as the framework.

To implement plugin adaptation using dynamic proxies, the proxy objects
would need to be modified in order to perform the adaptation. Instead of just
redirecting a method call to the server, a proxy would have to transform the
call in order to compensate for the framework changes.

4.1.2 Evaluation

When using third-party middleware, such as CORBA, DCOM, or .NET Re-
moting, as the foundation for plugin adaptation, an architecture and runtime
dependency on that infrastructure is introduced. This dependency furthermore
carries limitations intrinsic to the technique used. For example, in CORBA and
DCOM communication can only take place through well-defined interfaces spec-
ified in IDL. Consequently framework use would be restricted to placing method
calls against these interfaces, without supporting inheritance. This limits devel-
opment flexibility and conjures up the need for implementing inheritance-based
design patterns using workarounds.

.NET Remoting also places a burden on the framework and plugin devel-
opers. In order for program parts residing in different AppDomains to com-
municate with each other through the passing of objects, the latter must be
specifically designed for that purpose. In detail that means, that the objects
need to make their serializing logic explicit to be marshalled by value, or extend
a certain base class to be marshalled by reference.

Although no middleware dependency will arise, the same restrictions apply

22 CHAPTER 4. APPROACHES FOR PLUGIN ADAPTATION

when using dynamic proxies. Moreover, in comparison to using RPC-like com-
munication infrastructure as provided in CORBA and DCOM, dynamic proxies
suffer a major disadvantage: they are generated dynamically at runtime. Client
stubs and server skeletons, in contrast, are created once from the IDL specifica-
tion and are compiled to binary form. The adaptation logic can be hardcoded
into the stubs, while dynamic proxies would need to provide that at runtime
and would thus inflict runtime overhead on the system.

Another issue that cannot be handled easily for dynamic proxies are name
collisions. In order for older plugins to be loaded correctly, they need a copy of
the extension point interfaces they were compiled against. If the names of the
interfaces delivered with the framework have not changed since the plugin was
compiled, but these interfaces have been modified in another way, the system
will try to load both and fail. This is due to the fact, that a type’s name works
as a unique identifier for the type. In .NET, additional information (such as
version number, culture information, etc.) can be used to form a unique type
identifier. However, this remedy can only be used in conjunction with assembly
signing, so considerable effort is required to work around this problem.

4.2 Aspect-Oriented Programming

4.2.1 Concept

Aspect-oriented software development describes the activity of programming
with multiple crosscutting concerns or aspects [FECA04]. Often-quoted exam-
ples of aspects are security, logging, distribution, and transactionality. System
developers express the behavior for each concern in its own module which is
then woven together with the other modules into a working system. Thus, each
concern can be developed separately, while the specification of interaction be-
tween concerns is formalized independently using so-called join points. Without
aspect-orientation crosscutting concerns would have to be implemented over and
over again in different places. This becomes obvious when imagining that the
exemplary aspects mentioned above would be required by several methods. In
that case, every method would need to know about how to obtain a reference to
a logger, how to validate the current action against a security policy, etc. Code
that is distributed in such a fashion is called tangled. If the way of logging or the
security enforcement should be changed, many classes would need to be touched
in order to adapt every occurrence of that aspect. Aspect-oriented programming
(AOP) eases this problem by separating these aspects from the domain func-
tionality provided by the software. Figure 4.3 shows the basic modus operandi
of an aspect-oriented system.

Code

Aspects

Weaver Aspected Code

Figure 4.3: Aspect-Oriented Programming Workflow

4.2. ASPECT-ORIENTED PROGRAMMING 23

Aspect-oriented programming is a technique orthogonal to classic program-
ming techniques like functional programming, object-oriented programming,
etc. That means, that aspect-orientation can be used in conjunction with all of
these techniques in order to take care of crosscutting concerns. However, as we
evaluated it in the context of plugin adaptation for object-oriented frameworks
in .NET, this section will concentrate on object-oriented implementations of this
technique for the .NET platform.

All implementations of the aspect-oriented programming paradigm can be
distinguished into two classes: compile-time and runtime AOP. When perform-
ing compile-time aspect-orientation, the aspects’ code and the program’s func-
tional code are woven together before the compilation takes place, that is, the
weaver is a kind of precompiler. With runtime AOP, however, aspects and
functional code can be compiled separately and the weaving is done either stat-
ically when the program is loaded or dynamically during program execution.
There are different approaches on how this can be implemented in .NET, such
as rewriting the compiled code at load-time to contain calls to hook methods
that check whether aspect code should be executed or not, see for example [Gil]
and [Ver]. Another way of achieving runtime aspect-orientation is to subscribe
to the CLR as a debugger that gets notified whenever a method is called and
can then act appropriately, see [FGA04].

4.2.2 Evaluation

When reconsidering the setting described in the first chapter it becomes clear
that compile-time aspect-orientation cannot be applied in order to achieve plu-
gin adaptation. This is due to the fact that each customer installing a new
version of the Comarch framework would need to recompile both the frame-
work and the third-party plugins. First of all, this would only be doable, if the
framework’s and the plugins’ source code were available, and, secondly, it can-
not be expected from a customer to perform compilation on her own, because
this would mean to install a compiler. Furthermore, this would prohibit the in-
stallation of additional third-party plugins later on without having to recompile
the whole system.

Implementations permitting runtime weaving of aspects do not suffer these
disadvantages. However, as of this writing the .NET platform is relatively young
and in early development compared to Java and so there are only a few available.

Besides that, the main challenge when using aspect-oriented programming
for plugin adaptation is how to specify reusability or backward-compatibility as
an aspect. Aspects usually encapsulate non-functional software requirements –
as is reusability. In spite of that, a more sophisticated implementation tech-
nique would be necessary as when implementing logging or security policy en-
forcement. Instead, one could use the weaving functionality under the hood
to weave adaptations into the program code. However, this would revoke many
advantages gained from using aspect-oriented software development, because no
modeling or development of aspects independent from the rest of the program
takes place.

24 CHAPTER 4. APPROACHES FOR PLUGIN ADAPTATION

Chapter 5

Class and Interface
Adapters

5.1 General Adaptation Architecture

The plugin adapter generation approach presented in this thesis builds up on
class and interface adapters, that serve as an intermediate layer between the
plugins and the framework. The adaptation process is guided by change infor-
mation specified using a Change Definition Language. This process, as shown in
figure 5.1, consists of three phases: refactoring detection, change representation
and actual adaptation.

• Detection. We combine capturing the refactorings in the IDE (like in
CatchUp! [HD05]) with semi-automated specifications in a version con-
trol system (e.g., CVS [CVS]). On the one hand, we want to reuse and
extend the refactoring facilities of an IDE (such as Visual Studio) in a
CatchUp-like manner. For complex refactorings, which may not be di-
rectly supported in the IDE, we imply the use of .NET annotations in
combination with CVS and semi-automated detection of refactorings for
marking changes.

• Representation. The core of the technology is the Change Definition
Language (CDL), in which all the relevant information about the software
change is represented. Such information includes, for each framework
version, which software entities were changed and by which refactorings.
We call this information change specification. For further details, see
chapter 3.

• Adaptation. Based on the change specification, the actual adaptation
is performed. The change information is used to reconstruct a certain
framework state that is then serialized into class and interface adapters.

When recreating the framework state at a given version, not the complete
framework is rebuilt, only the extension points, that is the parts visible to
plugins. The class and interface adapters directly communicate with the actual
framework, so that there is no adapter chaining possibly incurring performance
degradation. The generated adapters are stored in their own assembly, that

25

26 CHAPTER 5. CLASS AND INTERFACE ADAPTERS

CDL

Version Control System
+ Annotations

Refactoring Environment
(stand−alone or integrated)

Class and Interface Adapters

Plugin adaptation

Change tracing

Figure 5.1: Plugin Adaptation Workflow

takes the place of the framework in the version represented by the adapters.
These adapters reify the framework’s extension points in their binary form (that
is, their ABI), which is why the plugins will transparently link and run against
them. Application binary compatibility is thereby recovered.

Figure 5.2 depicts the role of adapters during the evolution of a framework
throughout three consecutive versions. The first picture shows the framework’s
initial version together with a plugin compiled against it. No adapters are
needed. In the second picture, the framework has evolved to version 2, and
a new plugin has been developed for it. The plugin for the first version re-
quires adaptation to be performed in order to run with the new framework
version. Therefore, the adapter generator uses the change specification in order
to recreate the framework extension point expected by the plugin. The third
picture shows another step in the framework’s evolution. Here, both plugins
one and two need adapters to be placed in between them and the framework.
These adapters are not chained, they directly forward to the actual framework.
Again, a new plugin is developed for the current framework version.

For further details on the general adaptation architecture we refer to [SRB06].

5.2 Adapter Concept

A class adapter is a design pattern that converts the interface of a class into
another interface clients expect [GHJV95]. Interface here refers to the entirety of
methods a class provides to its clients1. The adapter design pattern – sometimes
also referred to as wrapper – can be described by four roles, that are played by
the participating runtime objects:

• Target. Defines the interface the client uses.

• Client. Collaborates with objects conforming to the target interface.

• Adaptee. Defines an existing interface that needs to be adapted.

• Adapter. Adapts the interface of the adaptee to the target interface.

1Technically speaking, a class’ interface also contains all public fields declared by that
class; however, as this violates the elementary principle of data encapsulation respectively
information hiding in object-oriented software development, we will ignore them here.

5.2. ADAPTER CONCEPT 27

fr
a
m

e
w

o
rk

im
p
le

m
e
n
ta

ti
o
n

Version 1

Legend

uses

generates

API 1

Plugin 1

time

(a) Version 1

time

API 1

Plugin 1

API 2

fr
a
m

e
w

o
rk

im
p
le

m
e
n
ta

ti
o
n

Version 2

Adapter

Generator

CDL

Plugin 2

(b) Version 2

time

API 1

Plugin 1

API 2

Plugin 2

Adapter

Generator

Adapter

CDL

fr
a
m

e
w

o
rk

im
p
le

m
e
n
ta

ti
o
n

Version 3

API 3

Plugin 3

(c) Version 3

Figure 5.2: Runtime System Architecture showing the Evolution of the Frame-
work

28 CHAPTER 5. CLASS AND INTERFACE ADAPTERS

framework

«adaptee»

RenamedExtensionPoint

renamedMethod1()

adapter

«adapter»
«target»

ExtensionPoint
delegate
method1()

client

«client»

Plugin

delegate.renamedMethod1();

«call»

«call»

Figure 5.3: Class Adapter annotated with Roles (UML diagram)

In this approach, the adapter and adaptee classes are not different concern-
ing their semantics or domain, they just represent two different states of the
same extension point class with respect to framework evolution. The generated
class adapter plays both the adapter and the target role. Adaptation is imple-
mented using delegation: each method defined in the adapter forwards to the
corresponding method in the adaptee. This is also the place where compensa-
tion for framework refactorings is performed. The methods forwarded do not
only comprise those defined in the immediate adaptee class, in fact all methods
in the inheritance hierarchy have to be delegated. Figure 5.3 shows a UML class
diagram for a class adapter.

Interfaces have to be treated differently. They cannot redirect method calls
to delegate objects because they only constitute a contract an implementor
agrees to obey. Nevertheless, they have to be regenerated, if the entire frame-
work extension point state is to be recreated by the adaptation process. In
order to perform adaptation for interfaces, two additional adapter classes have
to be generated. Each of them implements one interface version and redirects
to an instance of the other version similar to a class adapter. This is necessary
whenever an interface implementation is to pass through the adaptation layer.

Figure 5.4 shows the forward interface adapter that is handed to the plugin,
whenever it needs to access an interface implementation provided by the frame-
work. The framework’s implementation is “wrapped up” inside the interface
adapter and passed on to the plugin. Due to the interface adapter implement-
ing the generated old interface version, the implementation provided to the
plugin looks like an instance of the old interface.

The backward interface adapter shown in figure 5.5 becomes necessary, when
the plugin has to implement an extension point interface and present an instance
of that implementation to the framework. This is essentially the concept of a
callback – the framework can then use that instance and notify the plugin by
calling methods on the instance. The backward interface adapter takes the

5.2. ADAPTER CONCEPT 29

framework

«adaptee»
«interface»

RenamedExtensionPoint
renamedMethod1()

adapter

«adapter»

Adapter
delegate
method1()

«target»
«interface»

ExtensionPoint
method1()

client

«client»

Plugin

«call»

«call»

Figure 5.4: Forward Interface Adapter annotated with Roles (UML diagram)

framework

«target»
«interface»

RenamedExtensionPoint
renamedMethod1()

«client»

Framework

adapter

«adapter»

Adapter
delegate
renamedMethod1()

«adaptee»
«interface»

ExtensionPoint
method1()

client

Plugin

«call»

«call»

Figure 5.5: Backward Interface Adapter annotated with Roles (UML diagram)

30 CHAPTER 5. CLASS AND INTERFACE ADAPTERS

Adapter Type

Adapter Type

Adapter Type

Adapter Type

Type

Type

Type

Type Merge

Split

Namespace
Generated RefactoringExtension

Point
Namespace

Rename

Figure 5.6: Type Mappings for Refactoring Classes

plugin’s implementation of the old interface and presents it to the framework
as an implementation of the actual interface.

The aforementioned adaptation technique works for very basic change types,
such as the renaming of a method or a class. These changes are simple 1:1
mappings, that is, the application of the change transforms a single source
entity into a single target entity. However, more complex changes also require
more effort in compensating them. Type splits and merges are typical examples
for 1:n, respectively n:1 mappings. Figure 5.6 shows the three classes of type
mappings: the first column displays the generated class and interface adapters
mapping to the extension point types shown in the second one, while the third
column names a refactoring exemplary for the depicted mapping. In order to
cope with these changes, class and interface adapters have to be extended to
maintain several delegate objects instead of a single one.

A side-effect of this extension is that framework developers need to supply
information about the relations of the delegate objects in addition to the actual
split or merge change. This becomes obvious in the following example: consider
an extension point type OldType that has been split in two (NewTypeA and
NewTypeB). The class or interface adapter that reifies OldType thus contains
two delegate fields, one for NewTypeA and the other for NewTypeB. If a method
of a framework extension point type returns one of the two new types, the
adapter is wrapped around it, meaning that one of its delegate fields contains
the method’s return value. However, with only one delegate field initialized, the
adapter only represents half of the state and functionality of the original entity
OldType. It therefore needs to know how to obtain the second delegate object.
This additional information has to be specified by the framework developers in
the form of an access hint, as shown in figure 3.1 on page 17.

5.3. PROTOTYPE 31

5.3 Prototype

In order to provide a proof-of-concept for the plugin adaptation approach pre-
sented in this thesis, a prototype has been written. It uses the XML Change
Definition Language format described in chapter 3. As the prototype has been
architected in a modular fashion, the XML format can easily be exchanged with
a more sophisticated language. However, it is limited to just a few change types
and supports only the core language features. These are, nevertheless, suffi-
cient to build even complex applications. Chapter 6 discusses the future work
associated with extending the prototype and implementing support for further
language elements.

The process of adapter assembly generation is deterministic. The only inputs
required are the framework’s extension point assembly that is to be adapted
and the change information describing its evolution. Likewise, the sole output
created is the adapter assembly containing the adaptation logic. Therefore, the
prototype does not offer any graphical user interface. Instead, it is deployed as
a command-line executable. Figure 5.7 shows the input/output architecture of
the prototype.

The prototypal adapter generator has been implemented in C#. This choice
has several reasons, the most striking one being that the framework requiring
plugin adaptation and thereby motivating this thesis is written in C#. Thus, the
adapter generator was to generate an adaptation layer for the .NET platform.
Luckily, the .NET class library already offers broad support for the tasks needed
to be carried out. The System.Reflection.Emit namespace abstracts away
many hassles connected with generating CIL code, while System.Xml types
implement a variety of ways to deal with XML documents. The use of these
two building blocks is shown in figure 5.8. Besides that, implementing the
prototype in C# helped a lot to further the understanding of certain language
features the adapter generator had to cope with.

Algorithm

The algorithm the adapter generator prototype implements is exemplarily sketch-
ed in figure 5.9 for an extension point in version 3. The first step is the loading of
inputs – both the extension point to adapt and the corresponding change spec-
ifications. The extension point is then introspected using the types provided
in the System.Reflection namespace, and a metadata structure containing
all information about the extension point types is built up. For each previous
version an adapter assembly redirecting from that version to the current one

Adapter Generator

Changeset Management

Adapted
Extension
Point

Changesets

Extension
Point

Figure 5.7: Input/Output Architecture of the Prototype

32 CHAPTER 5. CLASS AND INTERFACE ADAPTERS

.NET Type Library

.NET Runtime

System.Xml

System.Xml.XPath

Reflection
System.

Emit
Reflection.
System.

Adapter Generator Changeset Management

Figure 5.8: Structural Architecture of the Prototype

is created. Thus, the prototype invocation depicted in the example would pro-
duce two adapter assemblies, the first reifying extension point version 2 and the
second bridging the gap between version 1 and 3.

Load changesets and extension point;
version := 3
Create Type Metadata Containers from extension point
For each (version -= 1) > 0 do
Obtain changeset for version difference
For each change in changeset do
Apply change to Type Metadata Container

Create adapter types
Create adapter assembly for version

Figure 5.9: Adapter Generation Algorithm in Pseudocode

A single adapter assembly is constructed as following. First, a changeset
for the version difference between the metadata containers and the version re-
quested has to be obtained. Second, while iterating over it in reverse order, each
change contained in the changeset is applied to the metadata container. The
transformation taking place effectively reverts the changes made to the exten-
sion point in the course of framework evolution. After all changes contained in
the changeset have been worked through, the transformed metadata containers
are serialized to types using the System.Reflection.Emit namespace. Finally,
the types are placed within a .NET assembly that is written out into a file. In
case another adapter assembly is to be constructed for the same extension point,
the metadata containers are reused and simply further transformed until they
reflect the right extension point state. The metadata transformation for three
changes is shown in figure 5.10.

5.4. TESTING THE PROTOTYPE 33

CIL Code

Metadata

Class and
Interface Adapters

Extension Point

Metadata Container

Ordered Changeset

Figure 5.10: Backward Metadata Transformation using an Ordered Changeset

5.4 Testing the Prototype

Requirements of the Testing Environment

Testing is an elementary part of software development, it is crucial to soft-
ware quality and vital to the success of the product [Som01]. This is even
more important in the context of the plugin adapter generation process, due
to the complexity of the tasks connected to it. Type and method generation,
even though carried out by means of the System.Reflection.Emit namespace’s
helper classes, is a complicated matter. For that reason, testing becomes a ne-
cessity. However, the generator does not contain a lot of business logic, that
could be tested using unit tests. Instead, the correctness of the generated CIL
code has to be validated and the interaction of the generated code with a plu-
gin and a framework needs to be tested. This, unfortunately, cannot easily be
achieved using simple unit tests, a different approach is needed.

When designing a testing environment for the plugin adapter generator pro-
totype, a few requirements had to be satisfied. The environment needed to
be:

• Separated. The testing setup should not hinder feature additions to
the prototype. This means, that extending the adapter generator with
new feature support should not require changing the testing environment,
otherwise maintenance effort would double.

• Extensible. New features added to the prototype should be easily testable
by simply adding a new test case to the testing setup. As a consequence,
the testing environment must be designed in an extensible fashion, so
that adding a new test does not require more work than was necessary for
adding the feature support to the prototype.

34 CHAPTER 5. CLASS AND INTERFACE ADAPTERS

• Generative. In order to keep maintenance costs small, the testing envi-
ronment should reuse as much code and also generate as much as possible.

Necessary Artifacts

A test run consists of two phases. At the beginning, the adapter generator
prototype is run against a framework extension point by supplying a changeset
document. The adapter assembly produced by the generator then has to be
checked by placing it in between a plugin and the actual extension point. Thus,
the following artifacts are required for running a test case:

1. Adapter generator run

• Extension point binary, version 2. Will be delegated to by the
generated adapter assembly, is part of the input to the generator.

• Changeset. Specifies the evolution of the extension point, is part of
the input to the generator.

2. Adapter assembly test

• Plugin. Calls the extension point through the generated adapter
assembly.

• Extension point source, version 1. Needed for compiling the
plugin and for deriving version 2.2

When designing the prototype, the B2 framework by Comarch wasn’t avail-
able yet. Therefore, we had to mimic a framework extension point and create
a plugin for it in order to be able to test the adapter generator during develop-
ment.

Testing Solution

The most effective testing approach would be to just use the extension point
source in version 1 and apply the changes specified in the changeset in order
to obtain the version 2. This way, test developers would not need to maintain
two versions of the same extension point. In order to perform this forward
transformation of the extension point source, some logic is needed for matching
each change to a source and target location in the source files and applying it
then.

Unfortunately, the System.CodeDom namespace intended for parsing source
code and representing it in an object-oriented tree-like model cannot be used for
this task, because it only provides a limited subset of C# language constructs
and expressions. Furthermore, the CodeDom implementation delivered by .NET
does not contain a C# parser. Even utilizing regular expressions in order to find
places in the source code that should be modified will not suffice. This is due to
the fact, that the Change Definition Language has intentionally been designed to
contain only changes made to the extension point API as seen by the plugin. A
refactoring, however, comprises more than just API changes, it needs to ensure

2For the compilation of the plugin it would actually suffice to have the binary of the
extension point in version 1, because compiling source code to .NET CIL does not require any
header or source files to be available.

5.5. IMPLICATIONS 35

that other source code locations in the extension point referring to the changed
API entity are modified as well. This is achieved by performing use- and call-
graph analysis and by applying graph transformation and rewriting. In fact,
a full-fledged refactoring engine is necessary to accomplish the transformation.
However, this is not feasible for a prototypal implementation.

The actual testing environment used during the development of the proto-
type is less optimal than described above, because it is not generative. Two
extension point versions have to be maintained separately in source code and
kept in sync with the change specification. Nevertheless, it was easy to set up
and does not depend on third-party products. However, when further develop-
ing the prototype, some effort should be spent on optimizing the testing setup,
in order to decrease the amount of work necessary for adding another test case.

5.5 Implications

The class and interface adapter generation approach presented in this thesis of-
fers several advantages over other techniques described in chapter 4. The most
notable one is the absence of any middleware dependencies in comparison to
CORBA or DCOM. This also means, that there are no special development
constraints to be taken into account, such as the use of IDL or the implemen-
tation or extension of special interfaces or classes. Furthermore, the few limi-
tations imposed by the adapter generation approach, that are discussed in the
next paragraph, only apply to the public API seen by plugins, the framework
development process is not affected. Another advantage can be phrased with
the term ”100% .NET” – in contrast to AOP this approach does not require
special compilers or aspect weavers, it works with pure .NET. The only mainte-
nance effort required is limited to creating changesets describing the evolution
of the framework. The consequence of this straightforward technique is a gained
freedom with respect to the location of adapater generation; it does not matter,
if the adapter generator is run at the framework development site or at the
customer site, this just depends on whether the changeset information should
be deployed with the framework or not. Even if adaptation is carried out at the
customer site, she will not notice anything, because the adapter generator can
be called automatically during the installation process.

As already mentioned, the use of adapter generation also has a few limita-
tions, although they do not really limit framework developers when properly
employing object-oriented software development techniques. The main down-
side is, simply put, the fact that class and interface adapters constitute no silver
bullet for plugin adaptation. Nevertheless it achieves a high efficiency when a
few things are born in mind: The golden rule “Never change a published inter-
face” as formulated by Fowler [FBB+99] can be weakened to “Never change a
published behavior nor remove information.” The first part of the revised rule
refers to the types of changes applied to a framework in the course of its evo-
lution – only behavior-preserving refactorings are supported by the adaptation
approach presented in this thesis. The second part relates to an imperative re-
sulting from the need to completely regenerate a previous extension point state;
in order for that to work, no information about that previous state (i.e., in the
form of changesets or deprecated methods) must be lost.

Some more concrete restrictions result from the feature set implemented by

36 CHAPTER 5. CLASS AND INTERFACE ADAPTERS

the adapter generator prototype. At the moment, there is no support for structs
or enums, and although it might be straightforward to add such support it has
not been evaluated. A slightly different complication is introduced by the use
of static members fields, as they can only be supported to a limited degree,
namely constants. Static fields can only be adapted, if they hold unmodifiable
primitive values, not because of the lack of implementation in the prototype but
for reasons intrinsic to class and interface adapters. Another advise, that also
holds true in general regardless of adaptation, is to never let plugins feel the need
to use the rich reflection functionality provided in .NET in order to analyze the
extension point. Otherwise plugins might discover that the extension point view
provided by the class and interface adapters is different to the one they were
originally compiled against (i.e., in terms of more constructors and additional
types).

Chapter 6

Future Work

6.1 Support for more Language Features

Due to the limited time frame available for this thesis, the adapter generator
prototype was not developed for functional completeness. As of this writing, it
only supports a limited number of changes. Nevertheless, it has been designed
with extensibility in mind using common design patterns. Therefore, adding
new changes should be an easy task.

The prototype supports only a subset of IL language features. Yet, the
supported set of features suffices to create complex programs. A future task
would be the addition of support for the following language features:

• Attributes. In IL one can associate additional meta information with
API entities using attributes. This metadata does not provide any func-
tionality, but it should be duplicated in the generated adapter assembly.

• Delegates. Function pointers as known from C are called delegates in
C#. They are represented by special types deriving from System.Delegate,
whose methods’ bodies are created automatically at runtime by the Vir-
tual Execution System. Adaptation support for delegates could be imple-
mented by providing custom delegate adapter types.

• Enums. These special types inheriting from System.Enum provide enu-
merations of named constants. Thereby they define a value space that
cannot be circumvented, because it will be checked by the compiler. It
might be possible to support enums in plugin adaptation by marshalling
their members to and unmarshalling them from their underlying primitive
type.

• Events. They are special type members and provide a language-level im-
plementation of the observer pattern. Delegates can be added to and re-
moved from events. Subscribed delegates will be notified when the event’s
fire method is invoked.

In order to support these features, the set of changes applicable to them has
to be investigated and custom adaptation techniques have to be developed.

37

38 CHAPTER 6. FUTURE WORK

6.2 Optimizing the Prototype

Another task for further investigation is the optimization of the prototypal
adapter generator. In parts, the generation process could be parallelized for
better performance. Many pieces of the generated adapter types are indepen-
dent of each other and could therefore be generated independently.

In many places the generated adapter assemblies use object instantiation
for creating new adapters. Instead of creating a new object everytime, cloning
could be used. This is due to the fact that the only state an adapter object
possesses consists of the delegate fields, which would need to be set after cloning
an existing adapter object.

Care must also be taken when extension point interface implementations are
used excessively, in order to avoid multiple adaptation. Whenever an adapter
has to handle an interface type either as a parameter or return type, the adapted
method does not check whether it is already passed an interface adapter, instead
a new adapter is instantiated and wrapped around the object. To address
this issue, a runtime check would need to be introduced to all locations where
interface adapters are created.

Further improvements comprise error handling and adapter assembly signing
for the use in trusted environments.

6.3 Automatic Changeset Generation

A crucial point in the concept of plugin adaptation as presented in this thesis is
the specification of framework changes in a Change Definition Language. How-
ever, the more complex the framework under refactoring is, the more changes
will potentially be applied to it. Requiring the framework developers to man-
ually track each change and record it in a changeset document is error-prone
and will considerably slow down the process of refactoring. Therefore, the in-
formation about framework changes should be generated automatically as far
as possible. Because of its complexity, the probability of a framework’s source
code to be administered by means of a source code management and version-
ing system is very high. The differences between two framework versions could
thus be extracted from such a system and stored in a changeset document. The
framework developers would then only need to fill out the gaps resulting from
incomplete refactoring detection or provide hints to the adapter generation pro-
cess for complex refactorings like Add Parameter. Consequently, a future task
would be the integration of the adapter generation process with an automatic
changeset generation process, compare [Wem06].

6.4 Validating Plugin Conformance

Many extension point types are stateful, that is, they define a communication
protocol that can be represented by a finite state machine. Unfortunately CIL
does not provide language features for ensuring a plugin’s adherence to that
communication protocol. Consider, for example, an extension point interface
representing a connection to a framework resource. A connection can be in
different states (i.e. open, closed, error, etc.). The connection interface might
provide methods to change the connection’s state and other methods to perform

6.4. VALIDATING PLUGIN CONFORMANCE 39

tasks specific to a certain state. However, there is no possibility to ensure that
a plugin only calls those methods available in the state the connection currently
is in, other than directly implementing the checking logic inside these methods.
From a software designer’s point of view this is a dissatisfactory solution, because
it does not provide a separation of concerns: the validation code is cluttered
with the actual connection logic.

The class and interface adapters’ role as a communication tunnel between
the framework and its plugins can be taken advantage of in order to remedy this
situation. By providing the adapter assembly generator with a protocol descrip-
tion in lieu of or in addition to a change specification, the produced adapters
can implement the checking logic for the extension point. That way, the two
concerns are properly separated and the extension point only contains actual
business logic, thereby increasing source code legibility and simplifying devel-
opment. However, in order to accomplish this functionality in the generated
adapters, a powerful protocol description language is needed and the generator
prototype would need to be extended to be able to process information provided
in such a language. A language already available for this task is the Object
Constraint Language (OCL), defined in the Unified Modeling Language (UML)
specification [OMG01]. It serves for defining constraints in UML models, that
are not expressable graphically. A UML modeling tool used for designing the
framework’s extension point could then extract the constraint information given
in OCL and pass them in to the adapter generation process. As this is a broad
research field, this thesis can only sketch some of the opportunities arising from
the plugin adaptation approach discussed.

40 CHAPTER 6. FUTURE WORK

Abbreviations

ABI Application Binary Interface

AOP Aspect-Oriented Programming

API Application Programming Interface

CDL Change Definition Language

CIL Common Intermediate Language

CLI Common Language Infrastructure

CLR Common Language Runtine

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

DTD Document Type Definition

IDE Integrated Development Environment

IDL Interface Definition Language

IPC Inter-Process Communication

OCL Object Constraint Language

ORB Object Request Broker

RPC Remote Procedure Call

UML Unified Modeling Language

XML eXtensible Markup Language

41

42 CHAPTER 6. FUTURE WORK

Bibliography

[BCF+06] Scott Boag, Don Chamberlin, Mary F. Fernandéz, Daniela Flo-
rescu, Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML
Query Language. W3C Candidate Recommendation
http://www.w3.org/TR/xquery/, June 2006.

[BK98] Nat Brown and Charlie Kindel. Distributed Component Object
Model Protocol – DCOM/1.0. Microsoft, January 1998.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote
procedure calls, February 1984.

[BPSM+04] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible Markup Language (XML) 1.0 (Third
Edition). Technical report, W3C, Cambridge, MA, February 2004.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath) Ver-
sion 1.0. W3C Recommendation, http://www.w3.org/TR/xpath,
November 1999.

[Cla99] James Clark. XSL Transformations (XSLT) Version 1.0. W3C
Recommendation http://www.w3.org/TR/xslt, November 1999.

[Com] Comarch. http://www.comarch.com.

[CVS] Concurrent Versions System. http://cvs.nongnu.org/.

[DJ05] Danny Dig and Ralph Johnson. The Role of Refactorings in API
Evolution. In ICSM ’05: Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance (ICSM’05), pages 389–
398, Washington, DC, USA, 2005. IEEE Computer Society.

[ECM02] ECMA. Standard ECMA-335: Common Language Infrastructure.
ECMA International, December 2002.
http://www.ecma-international.org/publications/
standards/Ecma-335.htm.

[Fal04] David C. Fallside. XML Schema Part 0: Primer Second Edition.
W3C Recommendation http://www.w3.org/TR/xmlschema-0/,
October 2004.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, June 1999.

43

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://www.comarch.com
http://cvs.nongnu.org/
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.w3.org/TR/xmlschema-0/

44 BIBLIOGRAPHY

[FECA04] Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Ak-
sit. Aspect-Oriented Software Development. Addison-Wesley Pro-
fessional, October 2004.

[FGA04] Andreas Frei, Patrick Grawehr, and Gustavo Alonso. A dynamic
AOP-engine for .NET. Technical Report 445, ETH Zürich, May
2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[Gil] Thomas Gil. AspectDNG. http://aspectdng.tigris.org/.

[HD05] Johannes Henkel and Amer Diwan. Catchup!: capturing and re-
playing refactorings to support api evolution. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engineering,
pages 274–283, New York, NY, USA, 2005. ACM Press.

[JF88] Ralph E. Johnson and Brian Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2):22–35, June 1988.

[Leh96] Meir Manny Lehman. Laws of software evolution revisited. In
EWSPT ’96: Proceedings of the 5th European Workshop on Soft-
ware Process Technology, pages 108–124, London, UK, 1996.
Springer-Verlag.

[Lev99] John R. Levine. Linkers and Loaders. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1999.

[MG00] Erik Meijer and John Gough. Technical Overview of the Common
Language Runtime. Microsoft, 2000.

[OMG01] OMG. Unified Modeling Language, version 1.4.2.
http://www.omg.org/cgi-bin/doc?formal/05-04-01, June
2001.

[Opd92] William Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[Rie00] Dirk Riehle. Framework Design, A Role Modeling Approach. PhD
thesis, ETH Zürich, 2000.

[Rob99] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD
thesis, University of Illinois at Urbana Champaign, 1999.

[Som01] Ian Sommerville. Software Engineering. Addison Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 6th edition, 2001.

[SRB06] Ilie Savga, Michael Rudolf, and Andreas Bartho. A Refactoring-
centered Approach for API Binary Compatibility. Submitted to
the IASTED Conference, 2006.

http://aspectdng.tigris.org/
http://www.omg.org/cgi-bin/doc?formal/05-04-01

BIBLIOGRAPHY 45

[Tan01] Andrew Stuart Tanenbaum. Modern Operating Systems. Prentice
Hall, 2 edition, 2001.

[Ver] Hamilton Verissimo. AspectSharp.
http://www.castleproject.org/index.php/AspectSharp.

[Vin97] Steve Vinoski. CORBA: Integrating diverse applications within
distributed heterogeneous environments, February 1997.

[Wem06] Ulf Wemmie. Using Version Control System for Tracking
Adaptation-Relevant Software Changes. Bachelor Thesis, 2006.

http://www.castleproject.org/index.php/AspectSharp

Confirmation

I confirm that I independently prepared the thesis and that I used only the
references and auxiliary means indicated in the thesis.

Dresden, September 27, 2006

	Titlepage
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Libraries, Frameworks, and Plugins
	1.3 Refactoring and Plugin Adaptation
	1.4 The .NET Environment
	1.5 Outline

	2 Categorization of Refactorings
	2.1 Classification of Changes
	2.2 Refactorings in Frameworks

	3 Specification of Changesets
	3.1 Required Refactoring Information
	3.2 Change Definition Language

	4 Approaches for Plugin Adaptation
	4.1 Remote Procedure Calls and the Dynamic Proxy Pattern
	4.1.1 Concept
	4.1.2 Evaluation

	4.2 Aspect-Oriented Programming
	4.2.1 Concept
	4.2.2 Evaluation

	5 Class and Interface Adapters
	5.1 General Adaptation Architecture
	5.2 Adapter Concept
	5.3 Prototype
	5.4 Testing the Prototype
	5.5 Implications

	6 Future Work
	6.1 Support for more Language Features
	6.2 Optimizing the Prototype
	6.3 Automatic Changeset Generation
	6.4 Validating Plugin Conformance

	Abbreviations
	Bibliography

