
Bachelor’s Thesis

Using Version Control Systems for
Tracking Adaptation-relevant Software

Changes

submitted by

Ulf Wemmie

born 02.04.1981 in Oldenburg(Oldb.)

Technische Universität Dresden

Fakultät Informatik
Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

Supervisor: MSc Ilie Savga
Professor: Dr. rer. nat. habil. Uwe Aßmann

Submitted November 1, 2006

2

Contents

1 Introduction 11
1.1 Motivation . 11

1.1.1 Goals . 12
1.2 Methodology . 12

2 Background 13
2.1 Refactorings . 13
2.2 Related Tracking-Strategies . 13

2.2.1 Automatic . 13
2.2.2 Semi-Automatic . 14
2.2.3 Manual . 16
2.2.4 Strategy Comparison . 17

3 Data Preprocessing 19
3.1 Version Control Systems . 19

3.1.1 Versioning Information . 19
3.1.2 Differences and Commonalities 20
3.1.3 Restoring Transactions . 21

3.2 C# Language Specification . 21
3.2.1 Types . 21
3.2.2 Members . 23
3.2.3 Parameters . 24
3.2.4 Attributes . 24
3.2.5 Accessibility Levels . 25
3.2.6 Inheritance . 25

3.3 Syntactic analysis . 25
3.4 Data Model . 25

4 Tracking Changes 27
4.1 Annotation Language . 27

4.1.1 Attribute Keywords . 27
4.1.2 Single and Multiple Changes 28

4.2 Using of Annotations to Identify Refactorings 29
4.2.1 Rename Method . 29
4.2.2 Merge Method . 29
4.2.3 Split Method . 30
4.2.4 Move Method . 30
4.2.5 Pull Up/Push Down Method 31

3

4 CONTENTS

5 Evaluation 33

6 Related Work 35

7 Future Work 37

8 Conclusion 39

List of Figures

1.1 Tool architecture . 11

2.1 Refactoring tags describing the prior state of the method. 16

3.1 Covered parts of the C# language specification 22
3.2 Types . 22

4.1 Rename method . 29
4.2 Rename method . 29
4.3 Merge methods . 30
4.4 Move method . 30

5

6 LIST OF FIGURES

List of Tables

2.1 Advantages and disadvantages of annotation-based approaches. . 16
2.2 Comparison - Tracking of refactorings 18

3.1 Different Version Control Systems in comparison 20
3.2 Allowed function members by reference type 23
3.3 Accessibility levels . 24

7

8 LIST OF TABLES

Glossary

AST Abstract Syntax Tree 26

CVFV Constant values in field variables 17

IDE Integrated Development Environments 14
IS Inheritance structure 17

SMC Sequence of method calls 17
SVN Subversion 22

UC User classes 17

VCS Version Control System 11
VSS Visual SourceSafe 22

9

10 Glossary

Chapter 1

Introduction

This is the first meaningful chapter, but all it contains is an introduction.

Database

Refactoring Tool

Version Control System

IDE

Source code

1. Check in 10. Check out

2. Check out

3. Parse

4. Store

6

2

1

4 5

3

2

1

4 5

3

5. Add ids

6. Store

8. Check in

9. Find and store changes

7. Convert

Figure 1.1: Tool architecture

1.1 Motivation

Refactoring is a standard means in software evolution. To explore low-level
refactorings two snapshots of source code are required that should be obtained
using Version Control Systems (VCS). Due to flexibility issues, a wide range
of VCS’ ought to be supported. It is expected that even a chain of mutually
dependent refactorings can be explored. This at least semi-automatically data

11

12 CHAPTER 1. INTRODUCTION

mining must not lack one of the supported refactorings and has to be unam-
biguous. Furthermore, the work is limited to changes on the interface level.
Changes to the methods’ bodys, for instance, are not to be captured.

Change tracking processes can lead to two main errors: result sets can be
wrong or incomplete. This can be avoided through the development and use of
an annotation language that supports the identification of fine-grained entities
independently of their names and properties. Every program entity such as
class, interface, method, field, and parameter is assigned a global unambiguous
number, the entity id:

1 [Id (3452345)]
2 public void setName (St r ing name) ;

The annotation language should be human and machine readable allowing
the developer to support the identification of refactorings.

Identifying refactorings can lead to two main errors: They can be discovered
wrong or missed.

1. Discovering refactorings wrong can be avoided by adding global unam-
biguous numbers in form of annotations to the fine-grained entities on
the interface level (Interfaces, Classes, Methods, Fields). By identifying
entities independently of matching properties even a chain of mutually
dependent refactorings mostly can be identified without the developer’s
help.

2. Refactorings will not be missed. Only in special circumstances, such as
merging and splitting of methods, the knowledge of the developer is re-
quested to classify details of the refactoring.

Version Control Systems often do not offer high performance and lack of
transactions or configurations. A fast and easy access is reached by prepro-
cessing and storing the information to a relational database. This process is
partitioned into Data Extraction and Restoring Transactions:

The former extracts the interface-informations of a subset of files stored in
the repository. This is done by parsing the obtained source code to an Abstract
Syntax Tree (AST) which can be traversed to store the interface informations
in the database. The latter restores transactions using Sliding Time Windows
[ZW04]. Unambiguous transactions are required to identify refactorings fault-
lessly.

Unlike most related tracking strategies annotation-based tracking is not in-
tended to track changes in the history of applications. Because

1.1.1 Goals

1.2 Methodology

Chapter 2

Background

2.1 Refactorings

As software grows old, the source code does, too. Software has to be maintained
by changing and extending source code. By way of examining the alternation
made in the evolution of different open source projects [DJ06] discovered that
“over 80 % of these changes could be considered refactorings”. Refactorings
are changes to the structure of source code that preserve its behavior. In the
context of binary-to-binary-compatibility only changes that alter the interface,
particularly types, fields and method-signatures, are important. Other interface-
preserving changes, for instance the low-level refactoring substitute algorithm
introduced by [Fow99], which only alters the statements of a method body
without changing the interface, are not covered. Most of the following strategies
only consider refactorings. However, some could be extended to be capable of
trachking other changes. Also, chains of refactorings, respectively refactorings
composed of low-level refactorings, can only be discovered by a few strategies.

2.2 Related Tracking-Strategies

Below, different refactoring tracking strategies are discussed. Depending on
the automation level they can be classified into automatic, semi-automatic and
manual strategies. Human interaction is solely avoided in the former. Particu-
larly semi-automatic strategies are not capable of avoiding the identification of
false positives and negatives. A false positive is a wrong identified refactoring,
whereas a false negative is a missed one. If they can potentially occur, the
developer has to validate the results. Manual strategies need the developer’s
interaction, too. Instead of validating the results, changes or previous states
have to be annotated to every program entity. In the following various different
automatic, semi-automatic and manual strategies are presented. Finally, a short
comparison is given.

2.2.1 Automatic

Many Integrated Development Environments (IDEs) contain refactoring tools,
which allow users to apply refactorings faultlessly. Refactorings can be obtained

13

14 CHAPTER 2. BACKGROUND

automatically by adding a logging mechanism to these tools. Thus, the problem-
atical tracking of false positives and negatives is avoided. Besides, the developer
does not have to validate the found changes.

Henkel and Diwan extend the refactoring engine of Eclipse [ECL] to cap-
ture refactorings [HD05]. These logged changes can be replayed later on other
machines to maintain binary-to-binary-compatibility. Extending Microsoft Vi-
sual Studio’s refactoring engine to convert this concept to the .Net environ-
ment seems to be disproportionally harder, because its code is not open source.
Moreover, the developer is limited to IDE-supported refactorings and cannot
manually refactor the code.

2.2.2 Semi-Automatic

Unlike the previous tracking strategy, refactorings are not logged in semi-automatic
tracking, but tool-supportively discovered. Depending on the approach the iden-
tification is more or less error-prone. As “it is not always possible to unambigu-
ously identify all refactorings” [GW05], semi-automatic tracking strategies are
characterized by the developer’s subsequent review in form of identifying false
positives and negatives. Particularly with regard to the use of the results to
automatically generate adapters between two successive versions, undiscovered
and even wrong discovered changes are very problematic. They can lead to bi-
nary incompatibility in form of runtime-errors or even unperceived malfunction.

Algorithm-based Comparison

In algorithm-based approaches similar code fragments of two successive versions
are expected to be equal. Their differences may have resulted from changes. As
no annotations are required, its strength lies in the analysis of preexisting source-
code. Nevertheless, refactorings are only identified in case of small deviations.
[GW05] realized, that “often the refactorings are impure: the developer has not
only performed the refactoring, but has changed other things at the same loca-
tion at the same time”. Particularly tracking of a chain of refactorings applied
to the same entity is almost impossible. The amount of comparisons necessary
for identifying refactorings is reduced by classifying entities into different sets,
for instance into sets of methods and classes. Depending on the refactoring only
a subset has to be analyzed.

Metric-based Heuristics

Current refactoring tracking research on metric-based heuristics restricts itself
to refactorings that change the inheritance tree’s structure. Standard-metrics
in the field of inheritance and method- and class-size are used by [DDN00] to
detect the following high-level refactorings:

• Split into superclass / merge with superclass

• Split into subclass / merge with subclass

• Move to superclass, subclass or sibling class

2.2. RELATED TRACKING-STRATEGIES 15

These refactorings are composed of Fowler’s low-level refactorings up/push down
method, extract sub-/superclass, collapse hierarchy. Software metrics charac-
terize the source code. Combined and used as heuristics, they can analyse which
methods and classes have been grown or shrinked in comparison to the previous
version and whether the inheritance tree changed. This information is used to
derivate the refactorings applied.

Fingerprints

Fingerprints can be seen as source-code characteristics allowing the identifica-
tion of similar entities. Advanced analysis can easily detect which changes oc-
curred between these entities. In the following only the techniques of Shingles
and Birthmarks are taken into account.

Shingles Shingles in their main purpose are a means to detect the resemblance
and containment of documents [Bro97]. This string matching technique is used
by Danny Dig to identify refactoring candidates [DCMJ06, DJ06].

In detail, a shingle is a contiguous sliding-time subsequence. All shingles of
size ω contained in a text, the so-called ω-shingling, is defined as a multiset.
The 2-shingling of

String username = user.getName();

is the multiset of shingles of size 2 contained in (String, username, user, get-
Name):

{(String, username), (username, user), (user, getName)}

For every method shingles are computed out of the tokens of the particular
entity’s (Javadoc-)comments and body. The sequence of tokens is divided into
all subsequences of a given length by using a sliding window. To increase the
performance of the ensuring comparison, all shingles are encoded with the help
of Rabin’s hash function[Rab81]. Furthermore, the amount of subsequences
can be restricted using a heuristic. By comparing the shingle’s hash-values of
different versions, the containment and resemblance of entities can be detected.
Every entity-pair of two successive versions that have a similar shingle encoding
are expected as the same entity that may has changed over time. If and which
refactoring has been applied to the entity is obtained by advanced analysis.

Birthmarks Birthmarks are characteristics of source code [TNMiM05]. It’s
original purpose is the identification of software being stolen and reused. There
are four types of Birthmarks

• Constant values in field variables (CVFV)

• Sequence of method calls (SMC)

• Inheritance structure (IS)

• User classes (UC)

16 CHAPTER 2. BACKGROUND

1 /∗∗
2 ∗ @past p u b l i c c l a s s C l i en t
3 ∗ ex tends Bus inessObjec t
4 ∗
5 ∗/
6 public class Customer
7 extends Bus inessObject [. . .]

Figure 2.1: Refactoring tags describing the prior state of the method.

Sometimes method have fields with constant initial values. These CVFV can
be used to identify a class. SMC are uses of types and methods of well-known
classes, such as J2SDK. They can signature a method. To identify a class
sometimes the inheritance structure and the used classes can be used. The same
classes of successive versions may use the same well-known classes. Compared
with the other techniques these insufficient identification mechanisms can only
be used to support another approach.

2.2.3 Manual

As the name suggests in manual refactoring tracking user-support is needed.
Changes or previous and future states are noted in source-code or other doc-
uments. Two approaches that annotate advanced information in the code are
taken into account.

Annotations

Despite of the previous detection strategies in annotation-based approaches the
source-code does not remain unchanged. Changes made to the interface can
be described or retrieved by meta-information. A human readable approach is
followed by [RH02]. Intuitive meta-tags are used to denote previous and future
versions of elements (Fig. 2.1). As the state prior to the second last change is
not provided, the whole evolutionary life cycle of the application is not covered.
The application developer is forced to adapt his application to the framework
very soon. Besides, this strategy is only applicable to changes within the same
type-definition. Changes to the inheritance tree can not be identified.

[CN96] use annotations to denote all changes made to the interface, which
leads to large change specifications in a cryptic and counterintuitive manner.

Advantages Disadvantages
No false positives and negatives Tool-Support required
More refactorings can be found Application developer has to learn

annotation language

Table 2.1: Advantages and disadvantages of annotation-based approaches.

2.2. RELATED TRACKING-STRATEGIES 17

2.2.4 Strategy Comparison

The strategies presented before have to be estimated with reference to their
suitability for binary-to-binary-compatibility. A prerequisite is the lack of false
positives and negatives. [DCMJ06] use precision and recall, two standard met-
rics, to measure the accuracy of their shingle-based tool RefactoringCrawler.

PRECISION = GoodResults
GoodResults+FalsePositives

RECALL = GoodResults
GoodResults+FalseNegatives

As no tracking of false positives and negatives is allowed, only a precision and
recall of 1 is sufficient for binary-to-binary-compatibility. Besides the strategy
introduced in section 4.1, this can only be achieved by automated and manual
approaches. Unfortunately everyone of the remained strategies has its disad-
vantages: An automated approach may not be integrated into Visual Studio
and limits itself to the refactorings supported by the IDE. Manual strategies
require the developer to learn an annotation language and to take down ev-
ery change applied. The approach introduced in section 4.1 can be classified
between manual and semi-automated. It is semi-automated because of its auto-
matic assignment of ids and it needs, like manual strategies, user-support for a
few refactorings. In total compared with a manual approach the latter restricts
the amount of user-interaction. A complete automatic approach integrated into
Visual Studio fails unless it does succeed to get detailed information about the
refactoring engine. Furthermore it is ambiguous whether the security concept
prevents the access to the this engine.

18 CHAPTER 2. BACKGROUND

Automatic Semi-automatic Manual
Refactoring Capturing Algorithm Metric Shingles State Changes New
Add Parameter ++ + - + o + ++
Extract Class ++ ++ ++ + o + ++
Extract Hierarchy ++ ++ ++ + o + ++
Extract Interface ++ ++ ++ + o + ++
Extract Method ++ ++ ++ + o + ++
Extract Subclass ++ ++ ++ + o + ++
Extract Superclass ++ ++ ++ + o + ++
Move Class* ++ ++ + + o + ++
Move Field ++ ++ + + o + ++
Move Interface* ++ ++ + + o + ++
Move Method ++ ++ + + o + ++
Pull Up Constructor1 ++ ++ ++ + o + ++
Pull Up Field ++ ++ ++ + o + ++
Pull Up Method ++ ++ ++ + o + ++
Push Down Field ++ ++ ++ + o + ++
Push Down Method ++ ++ ++ + o + ++
Rename Class* ++ + - + o + ++
Rename Field* ++ + - + o + ++
Rename Interface* ++ + - + o + ++
Rename Method* ++ + - + o + ++

Table 2.2: Comparison - Tracking of refactorings

Chapter 3

Data Preprocessing

Efficient tracking of refactorings always requires preparation of data. As direct
access to repositories is very slow, and parsing each version in every comparison
step needs a lot of computing time, all necessary information is stored to a
database. Preprocessing of data consists of various steps described below. At
first, in section 3.1, the characteristics of Version Control Systems are treated.
Then, in section 3.2 a fundamental subset of the C# language specification is
described followed by the syntactic analysis of data. Finally, section 3.4 depicts
the data model used.

3.1 Version Control Systems

Version Control Systems in their original purpose allow teams of developers
to work independently of each other on the same piece of code. In addition,
they allow them to trace back or undo changes. Mainly, ASCII coded files are
archived in repositories. Changes of the source code are made to local copies
and checked in into the repository, afterwards. To not completely store every
version, only differences are stored. Therefore, two successive versions of the
same file are compared line by line. This comparison originates from diff, a
file comparison tool for Unix. Its output in general only shows added, deleted
or replaced lines. Below, information available in Version Control Systems are
depicted. Afterwards differences and commonalities of different implementations
are treated. Finally, transaction restoring techniques are introduced.

3.1.1 Versioning Information

Depending on the Version Control System, different amount of meta information
is available. Especially details of versions, transaction and configurations are
very important.

Versions

Version Control Systems work file based. Every revision of a single file is stored
to the repository. These revisions are described by versions that in general
contain at least the meta-information name, path, committer, timestamp and
version number. Often a required or optional comment is assigned.

19

20 CHAPTER 3. DATA PREPROCESSING

Transactions

A transaction is the set of all versions that have been added to the repository
in conjunction. Every version is part of one single transaction. Many Version
Control Systems such as Visual SourceSafe (VSS) or CVS[CVS] do not store
information about transactions. A technique to retrieve these transactions is
described in 3.1.3.

Configurations

The set of the newest versions available after a transaction is called a configura-
tion. Transactions only include the versions that describe files which have been
changed or deleted. A configuration contains both changed and unchanged files
available after the corresponding transaction. Nevertheless, deleted files are not
part of configurations.

3.1.2 Differences and Commonalities

Although more VCS’ exist, only Visual SourceSafe (VSS) [VSS], CVS and Sub-
version (SVN) [SVN] are discussed in more detail. At first, the distinct models,
Lock-Modify-Unlock and Copy-Modify-Merge, which are used in version control,
are compared.

Visual SourceSafe CVS Subversion
Atomic transactions - - x
Change set support - - o
Version number based on file file transaction
Commit message per file change ?

Table 3.1: Different Version Control Systems in comparison

Lock-Modify-Unlock vs. Copy-Modify-Merge

The latter is supported by all of the researched VCS’. Although VSS enables the
use of Lock-Modify-Unlock instead, it should be avoided in the context of change
tracking. Lock-Modify-Unlock is characterized by a file locking mechanism,
which allows single users to gain exclusive access to a resource. Others have
to wait until the resource is unlocked. Particularly change tracking tools need
access to all files that have been modified in conjunction. Only one locked file can
avoid the preprocessing at a certain time, as individual source code changes may
affect various files. Thus, a more suitable model, such as Copy-Modify-Merge,
is needed. It allows multiple checkouts of resources at the same time, which
avoids the problem of change tracking tools discussed before. However, merging
conflicts, which have to be corrected by the user, may occur. Transactions
containing unparseable files have to be corrected or discarded by a tracking
tool, as they cannot be processed.

Atomic Transactions

Moreover, incomplete check ins may lead to incomplete transactions, too. Sub-
version avoids this lack of files by using atomic transactions. Either all changes

3.2. C# LANGUAGE SPECIFICATION 21

are checked in together or the transaction is rolled back leading to an unchanged
repository. Because transactions are rarely supported by VCS’, transaction
restoring algorithms are discussed below.

Deleting Files

3.1.3 Restoring Transactions

As many Version Control Systems do not observe the checkins done together, a
technique that restores transactions is needed. All versions that are not assigned
to a transaction have to get sorted in ascending order depending on their time
stamp. Then, those versions, that have been checked in within a specified
interval, are attached to the same transaction. [ZW04] distinguish Fixed Time
Windows and Sliding Time Windows.

In Fixed Time Windows all versions checked in within a fixed interval are
assumed to belong to the same transaction. The starting time is always obtained
from the first version. However, the check in of very big or many files may exceed
the interval leading to incomplete transactions.

This is avoided by using a Sliding Time Window heuristic, which appoints
the maximum temporal gap between two successive versions. Two successive
versions are in the same transaction if the temporal gap between them does not
exceed a given value. Otherwise, a new transaction is started.

3.2 C# Language Specification

The section’s intention is not to give an introduction to C#. Therefore previous
knowledge about the language is implied. Furthermore, the description of parts
of the language has not the pretension of being complete. Only a small sub-
set important for binary-to-binary-compatibility is taken into account. More-
over, due to the complexity only the most important language constructs are
treated. Tracking changes requires information about the logical organization
of the source-code. As assemblies are a means for physical packaging and de-
ployment, they are out of scope. The outer closure of the logical organization of
C#-entities are namespaces [Cor01]. Their members can be another namespace
or types. Every type declared belongs to a particular namespace or implicitly
to the global one.

3.2.1 Types

A type can either be a value type, a reference type or a type parameter. The
variables of the former directly contain data, whereas reference types’ variables
contain references to their data. Value types are either struct types or enu-
meration types. Some predefined struct types, which are called simple types,
are provided in C# by reserved words such as bool, byte, int, long, double or
char. Reference types can be class types, interface types, array types or delegate
types. Only class and interface types, which are probably the most important
ones, are regarded in more detail. Type parameters are part of generics. Their
treatment is designed to be part of future work.

22 CHAPTER 3. DATA PREPROCESSING

namespace

type

value parameter reference type type parameter

class type

interface type

array type

delegate type

constant

field

method

property

event

data member

member

function member

Figure 3.1: Covered parts of the C# language specification

type

value typereference type

class type

interface type

delegate type

array type

enumeration

struct

reference type

type parameter

Figure 3.2: Types

3.2. C# LANGUAGE SPECIFICATION 23

Class

All classes by default are private, but the use of public, protected, internal,
or private access modifiers is possible, too. Classes can implement multiple
interfaces, but only extend a single class. Classes can be nested.

By using the abstract modifier, classes can be declared abstract. In contrast
to general classes, abstract classes are incomplete classes that cannot be instan-
tiates. They can only be used as base classes. Members of abstract classes are
permitted, but not required to be abstract.

.Net 2.0 supports partial classes, a mechanism to split the declaration of a
class to various files. Nested and partial classes are considered to be part of
future change tracking..

Reference type Possible function member
class method

property
event
index
operator
instance constructor
destructor
static constructor

interface method
property
event
index

Table 3.2: Allowed function members by reference type

Interface

Interfaces define contracts that are implemented by classes or structs. Like
classes they can have a partial modifier. Referring to table 3.2 their members
only can be methods, properties, events or indexes. An interface is public by
default, but the access modifiers public, protected, internal or private can be
assigned as well.

3.2.2 Members

C# distinguishes between the four access modifiers public, protected, internal
and private to declare the accessibility of members or types. All members by
default have an implicit accessibility level. Their default values and the allowed
modifiers depend on the type they are declared in. As stated in table 3.3 class
members have a private and interface members a public one.

Members are separated in two parts: data members and function mem-
bers. The data members constants and fields, as well as the function members
methods and constructors are described below. Further function members such
as properties, events, indexers, operators, and destructors are omitted due to
complexity reasons.

24 CHAPTER 3. DATA PREPROCESSING

Members of Default accessibility Allowed declared accessibility
class private public

protected
internal
private
protected internal

interface public none

Table 3.3: Accessibility levels[Cor01]

Constants and Fields

Constants are constant variables computed at compile-time. As these class-
members are implicitly static, the appropriate modifier is not required and not
even allowed.

Fields on the other hand can be either associated with a class or an object.
If the field is assigned a static modifier, it is a static variable associated with a
type. Otherwise it is an instance variable associated with an object.

Methods

Methods are parts of objects, classes or interfaces. They are characterized
by their signature. ”The signature of a method consists of the name of the
method, the number of type parameters, and the type and kind (value, refer-
ence, or output) of each of its formal parameters, considered in the order left to
right”[Cor01]. In C# the parameter names and the return value of the method
are not part of the signature. As signatures have to be unique within the same
type, it is impossible to declare two methods that only differ in their return-
values or parameter-names. Although out and ref parameter modifiers are part
of the signature, two methods may not differ only in these values.

Constructors

Constructors can be either instance or static constructors. The syntax is similar
to the method’s one, but in contrast constructors lack of a return value.

3.2.3 Parameters

3.2.4 Attributes

Attributes are declarative elements that attach information to various program
entities. They consist of a name and optional arguments. This information is
accessible at runtime. In contrast to ordinary comments the attribute’s syntax
is checked at compile-time. Attributes cannot be assigned to every entity, but
most of the entities, such as classes, interfaces, structs, enums, delegates, or
function members, are supported. However, a namespace cannot be attached
an annotation. After parsing the source code, every attached attribute is rep-
resented by a node of its own in the Abstract Syntax Tree (AST).

3.3. SYNTACTIC ANALYSIS 25

3.2.5 Accessibility Levels

3.2.6 Inheritance

3.3 Syntactic analysis

3.4 Data Model

1 CREATE TABLE [dbo] . [SeedGenerator] (
2 [SeedGenerator] [int] IDENTITY(1 , 1) NOT NULL
3) ON [PRIMARY]

26 CHAPTER 3. DATA PREPROCESSING

Chapter 4

Tracking Changes

4.1 Annotation Language

As learning and utilizing a difficult and complex change description language
is very cumbersome, it is advantageous to keep such a language as simple as
possible. Few keywords in conjunction with computer-aided support lowers the
previous knowledge and mostly supersedes user interaction. Anyway, change
tracking shall not discover false positives and negatives. In place of adding
change descriptions or previous states, like done in the manual approaches dis-
cussed in 2.2.3, only a global unique identifier is assigned to every program
entity on the interface level:

[ID (9 8 7)]
pub l i c void c r e a t e B i l l (Date invo iceDate)

Depending on the applied changes, the developer has to change the attribute
type from ID to MergeSequence, MergeSimilar or Split. Unlike ID, the former
two attributes require more than one parameter.

4.1.1 Attribute Keywords

The annotation language contains the keywords ID, MergeSequence, MergeSimilar
and Split. In form of attributes they are annotated to program entities, such
as reference types or members. The purpose of the ID attribute is only the
identification of entities, whereas the other describe special changes to method
bodies in a coarse grained way. Attribute keywords and refactoring names can-
not be used interchangeable, because only the environment of each entity, such
as its position in the inheritance hierarchy, in combination with the keywords
assigned lead to an unambiguously identified refactoring.

ID

The ID attribute only has one mandatory parameter, a global ambiguous iden-
tifier which facilitates the recognition of the program entity it is assigned to. In
the actual context, identifiers are always the starting point for change tracking.
After each check in to the VCS, declarations on the interface level in conjunc-
tion with the change information in form of annotations are recorded. This

27

28 CHAPTER 4. TRACKING CHANGES

information is the basis for change tracking. To initialize a new position for fur-
ther change tracking, the tracking tool replaces the attributes of those program
entities, which contain a different annotation than ID, with a new unambiguous
identifier. Subsequently, the changed source code is checked in by the tracking
tool. Prior to subsequent code modifications, the developer has to check out
this new initial state.

MergeSequence

MergeSequence introduces a new method, which merges the bodies of several
methods in a sequential order. The statements of the former bodies may be
adapted, but their order shall stay unchanged. In the strict sense, the bodies of
the old methods are moved to a new one, and the previous IDs are appended to
the parameter list of the new method’s MergeSequence attribute. The order of
the attribute’s parameter list fixes the sequence, in which the bodies have been
merged. Finally, the remaining parts of the old method, such as its signature
and return type, have to be removed.

MergeSimilar

Methods with similar behavior are merged with use of the MergeSimilar at-
tribute. Through this, duplicated methods can be removed. All prior methods
are assumed to have the same signature. This attribute not necessarily repre-
sents a merge method refactoring. A pull up refactoring is likewise possible.
To achieve an unambiguous identification, the method declaration additionally
has to be taken into account. Section 4.2 depicts, on what terms a certain
refactoring is tracked.

Split

4.1.2 Single and Multiple Changes

ToDo: Adapt text to subsection
Depending on the applied changes, the id remains the same or a new one is as-
signed. Unless methods are merged or split, the id stays unchanged. Otherwise,
changes of two subsequent configurations are discoverable by comparing their
entities of the same identifier. As transactions contain only changed versions,
the problem can be reduced to a comparison of the previous active configura-
tion with the ensuring transaction. Then, all changes are compared to the total
set of former active versions. In order to minimize the user interaction, ids are
computed and assigned computer-aided. A tool parses the very first version and
adds ids to all entities. Ids are encapsulated into C# attributes. After parsing,
their representing nodes are already assigned to the exact entity node. Com-
ments, in contrast, lack of this assignment. Another advantage of annotations
is the automatic syntax validation, which takes place every time the developer
compiles his code. Even refactorings applied within different classes of the in-
heritance hierarchy are supported, as overwritten method of the same signature
have an id of their own. Below, different refactorings are taken into account.
They are exemplified by reinterpreting examples of Fowler’s refactoring catalog
[Fow99] in the context of annotation based change tracking.

4.2. USING OF ANNOTATIONS TO IDENTIFY REFACTORINGS 29

4.2 Using of Annotations to Identify Refactor-
ings

The following chapter covers chains of refactorings.

4.2.1 Rename Method

If the name of a method does not offer information about its intention, a rename
method refactoring can be applied to change the method name to a better one.

getinvcdlmt()

Customer

getInvoiceableCreditLimit()

Customer

Figure 4.1: Rename method

Consider a method, which consists of the obfuscated name getinvcdtlmt.
Rename method is used to replace the old name with getInvoiceableCreditLimit,
a name, that is more comprehensible by humans (Figure 4.1). As the method
is unambiguously identified by an identifier, only the names of two successive
versions’ names have to be compared. The identifier has been assigned to an
annotation of the type ID or MergeSimilar. In the former case its value remains
the same (Figure 4.2), whereas the latter leads to a new assigned ID due to the
merge operation. MergeSequence and Split do not indicate a rename method
refactoring, because they implicitly introduce one or more new methods.

1 [ID (1000)]
2 pub l i c double get invcdlmt ()

(a) Version n

1 [ID (1000)]
2 pub l i c double getInvoiceableCreditLimit ()

(b) Version n + 1

Figure 4.2: Rename method - The method name is changed from getinvcdlmt
(a) to getInvoiceableCreditLimit (b). Nevertheless, the identifier remains
the same.

4.2.2 Merge Method

ToDo: Rewrite/adapt this subsection
Certainly associating global ids to entities is sufficient to automatically identify
most of the low-level refactorings. Splitting or merging methods especially in
chains of refactorings are hardly to identify. But which id is to be assigned to
a merged method? As the merged method’s body consists of the statements of

30 CHAPTER 4. TRACKING CHANGES

1 [ID (1000)]
2 public void setName ()
3

4 [ID (10001)]
5 public void setSurname ()

(a)

1 [MergeSequence (1000 , 1001)]
2 public void setName ()

(b)

1 [ID (1005)]
2 pub l i c void setName ()

(c)

Figure 4.3: Merge methods - two methods with ids 1000 and 1001 (a) are merged
to one method (b). After every check-in a tool replaces sequences of annotations
through a new id (c)

both methods, their ids have to be assigned together with an merge-attribute.
Even a sequence of merged methods is supported. To enhance the readability
after every check-in, sequences of annotations are replaced by a new id (Figure
4.3).

4.2.3 Split Method

ToDo: Rewrite/adapt this subsection
Like merging splitting has an annotation of its own: split. Its argument contains
a character indicating the part of the split method: a for the first part, b for
the second and so on. In addition the old annotation with id remains in the
code until it is checked-in and the sequence of annotations is replaced by one
annotation with a new id.

4.2.4 Move Method

By applying a move method refactoring, a method is moved to another reference
type, for example, because the features of the target are more often used by the
method than the ones of the source.

aMethod()

Class1

Class2

Class1

aMethod()

Class2

Figure 4.4: Move method

Nevertheless, on condition that the target type is part of the inheritance

4.2. USING OF ANNOTATIONS TO IDENTIFY REFACTORINGS 31

hierarchy of the source type, in place of move method, a pull up or push down
refactoring has been applied. A move method refactoring is characterized by
the following conditions:

∀methodk ∈ V ersioni

∀methodl ∈ V ersioni+1

∃hierarchyTypem ∈ SuperType(methodk) ∪ SubType(methodk) :
ID(methodk) = ID(methodl) ∧

Type(methodk) 6= Type(methodl) ∧
hierachyTypem 6= Type(methodl)

4.2.5 Pull Up/Push Down Method

∀methodk ∈ V ersioni

∀methodl ∈ V ersioni+1

∃superTypem ∈ SuperType(methodk) :
ID(methodk) = ID(methodl) ∧

Type(methodk) 6= Type(methodl) ∧
superTypem = Type(methodl)

32 CHAPTER 4. TRACKING CHANGES

Chapter 5

Evaluation

User has to add semantic informations Provide Refactorings-proposal Further-
more are all Refactorings selectable

33

34 CHAPTER 5. EVALUATION

Chapter 6

Related Work

Heuristics and Metrics

35

36 CHAPTER 6. RELATED WORK

Chapter 7

Future Work

.

37

38 CHAPTER 7. FUTURE WORK

Chapter 8

Conclusion

39

40 CHAPTER 8. CONCLUSION

Bibliography

[Bro97] Andrei Z. Broder. On the resemblance and containment of docu-
ments. In SEQUENCES ’97: Proceedings of the Compression and
Complexity of Sequences 1997, page 21, Washington, DC, USA,
1997. IEEE Computer Society.

[CN96] Kingsum Chow and David Notkin. Semi-automatic update of appli-
cations in response to library changes. In ICSM ’96: Proceedings of
the 1996 International Conference on Software Maintenance, pages
359–368, Washington, DC, USA, 1996. IEEE Computer Society.

[Cor01] Microsoft Corporation. Microsoft C# Language Specifications. Mi-
crosoft Press, Redmond, WA, USA, 2001.

[CVS] Concurrent Versions System.

[DCMJ06] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph John-
son:. Automated detection of refactorings in evolving compo-
nents. In Proceedings of European Conference on OO Programming
(ECOOP’06), Nantes, France, 2006.

[DDN00] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
Finding refactorings via change metrics. In OOPSLA ’00: Pro-
ceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 166–177,
New York, NY, USA, 2000. ACM Press.

[DJ06] Danny Dig and Ralph Johnson. Toward automatic upgrade of
component-based applications, May 2006.

[ECL] Eclipse.

[Fow99] Martin Fowler. Refactoring - Improving the Design of Existing
Code. Addison-Wesley Longman, Inc., 1999.

[GW05] Carsten Gorg and Peter Weisgerber. Detecting and visualizing
refactorings from software archives. In IWPC ’05: Proceedings
of the 13th International Workshop on Program Comprehension,
pages 205–214, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[HD05] Johannes Henkel and Amer Diwan. Catchup!: Capturing and re-
playing refactorings to support api evolution. In ICSE, pages 274–
283, 2005.

41

42 BIBLIOGRAPHY

[Rab81] Michael O. Rabin. Fingerprinting by random polynomials. Tech-
nical Report TR-15-81, Harvard Aiken Computation Laboratory,
1981.

[RH02] Stefan Roock and Andreas Havenstein. Refactoring tags for auto-
matic refactoring of framework dependent applications, 2002.

[SVN] Subversion.

[TNMiM05] Haruaki Tamada, Masahide Nakamura, Akito Monden, and Ken
ichi Matsumoto. Java birthmarks —detecting the software theft —.
IEICE Transactions on Information and Systems, E88-D(9):2148–
2158, September 2005.

[VSS] Visual SourceSafe.

[ZW04] Thomas Zimmermann and Peter Weigerber. Preprocessing cvs
data for fine-grained analysis. In Proceedings of the First Inter-
national Workshop on Mining Software Repositories, pages 2–6,
May 2004.

Confirmation

I confirm that I independently prepared the thesis and that I used only the
references and auxiliary means indicated in the thesis.

Dresden, November 1, 2006

	Introduction
	Motivation
	Goals

	Methodology

	Background
	Refactorings
	Related Tracking-Strategies
	Automatic
	Semi-Automatic
	Manual
	Strategy Comparison

	Data Preprocessing
	Version Control Systems
	Versioning Information
	Differences and Commonalities
	Restoring Transactions

	C# Language Specification
	Types
	Members
	Parameters
	Attributes
	Accessibility Levels
	Inheritance

	Syntactic analysis
	Data Model

	Tracking Changes
	Annotation Language
	Attribute Keywords
	Single and Multiple Changes

	Using of Annotations to Identify Refactorings
	Rename Method
	Merge Method
	Split Method
	Move Method
	Pull Up/Push Down Method

	Evaluation
	Related Work
	Future Work
	Conclusion

