
API Changes - How Much Would You Allow?

Michael Rudolf, Ilie Savga
Technische Universität Dresden

Nöthnitzer Str. 46, 01187 Dresden, Germany
{michael.rudolf,ilie.savga}@inf.tu-dresden.de

Jan Lehmann, Jacek Śliwerski, Harald Wendel
Comarch Software AG

Chemnitzer Str. 50, 01187 Dresden, Germany
{jan.lehmann,jacek.sliwerski,harald.wendel}@comarch.com

Abstract

Once a software library is deployed, it is extremely dif-
ficult to modify published types. Every new version has
to preserve backward compatibility with existing applica-
tions. This limits the number of changes that may be ap-
plied to the public classes defined in the library. We present
a tool that assists developers in maintaining the consistency
of a shared library with the existing software. It allows
for greater flexibility in evolving the library’s functionality
by supporting a wide range of changes.

1. Introduction

Backward compatibility of public classes and interfaces
is one of those concerns that may limit the development
of any software product. Once published (i.e. deployed),
classes and interfaces may only change in a very limited
way, otherwise the applications compiled and linked against
them may stop working correctly. For instance, if a method
in the API is renamed, the developer is obliged to keep
the old one, too, marking it as deprecated. Although widely
used, this practice bloats the API and does not guarantee
that the method will not be used by new software packages.

Figure 1. Interface adaptation. After the up-
grade applications use a type-identical set
of interfaces that redirect the calls to their
new versions.

In order to alleviate the problem of API evolution of one
of our ERP systems, we have created a tool that allows for
the adaptation of different versions of shared libraries. As
the system’s API is mostly used by third-party companies,
we assumed unavailability of their sources at the adaptation
time.

Figure 1 presents an overview of our approach. The gen-
eral idea is to supplement the new version of the library

with a set of adapters [3] that constitute a redirection layer
between the old and new API types. This approach allows
for a large spectrum of changes to the classes and interfaces,
such as renaming and removing types and their members, or
modifying the signatures of methods.

2. Adapter Development Environment

The development of adapters is a tedious and
monotonous process. The environment we have created is
meant to ease this work.

Figure 2. Adapter Development Environment
encapsulates the compiler and a heuristics
engine that help developers create adapters
between two versions of assemblies.

1. First, old and new versions of assemblies are compared
by the heuristic engine which tries to identify elements
they have in common.

2. Next, the resulting source file is edited by the devel-
oper, who amends and completes the source.

3. Finally, the compiler generates the adapters.

Figure 2 presents the components of the tool and the related
workflow: All the work is performed within a development
environment the developers are accustomed to (see Fig-
ure 3). The method bodies are defined in a special-purpose
C#-like programming language, which supports multiple
versions of the same type in one source file and features
partial type inference and strict type checking.

Figure 3. The Adapter Development Environ-
ment integrated into the Visual Studio suite.



3. Related Work

Griswold and Notkin [4] discuss how to automatically
propagate changes in the software libraries to the applica-
tion code. Their approach requires the full availability of the
application source code at the time of library change. This
requirements is relaxed in the approach of Chow and Notkin
[2], where the library maintainer annotates the changes in
the API interfaces and specifies rules for adapting applica-
tion code, that used the old library version, to the new re-
lease. Based on change and rule specifications, the old ap-
plication source code is then re-written by a transformation
engine.

The idea of recording the refactorings (behaviour-
preserving source-to-source program transformations) ap-
plied to a software library for their later application to the
client code is the basis of CatchUp! [5]. The tool, imple-
mented as a plugin for Eclipse, is able to listen for occur-
rences of, capture and record framework refactorings in a
file. The file is then delivered to the application developer,
who “replays” them on the application code, which used the
old framework version.

The work closest to ours in spirit is of Balaban et al.
[1]. To automatically migrate (Java) applications that use
an evolved legacy system, they provide a migration speci-
fication. The latter defines how to map uses of old legacy
classes to their replacement classes. The authors rely on
type constraint analysis to control the correctness of migra-
tion and to preserve the program behaviour.

The related technologies presented in this chapter require
the availability of application sources. In addition, all of
them are not transparent for the application user as they re-
quire recompilation of existing applications. These two lim-
itations have been considered unacceptable for our project.

4. Conclusions

Although the presented tool does not eliminate the bur-
den of preserving the semantic backward compatibility, it
allows for a wide range of changes applicable to an API
in a backward compatible manner. Moreover, in contrast
to similar approaches our tool:

1. is transparent for existing applications, and

2. does not require access to their sources.

Acknowledgments. The ADE project is funded
by the Sächsische Aufbaubank, project number
11072/1725.

References

[1] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class
library migration. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented pro-
gramming, systems, languages, and applications, pages 265–
279, New York, NY, USA, 2005. ACM Press.

[2] K. Chow and D. Notkin. Semi-automatic update of appli-
cations in response to library changes. In ICSM ’96: Pro-
ceedings of the 1996 International Conference on Software
Maintenance, page 359, Washington, DC, USA, 1996. IEEE
Computer Society.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlisside. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Massachusetts, 1995.

[4] W. G. Griswold and D. Notkin. Automated assistance for
program restructuring. ACM Trans. Softw. Eng. Methodol.,
2(3):228–269, 1993.

[5] J. Henkel and A. Diwan. Catchup!: capturing and replaying
refactorings to support api evolution. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engi-
neering, pages 274–283, New York, NY, USA, 2005. ACM
Press.



A. Tool Presentation

Slides: Brief Introduction to API Adaptation
We will begin our presentation with a summary of our
approach in order to sketch the general idea of API
adaptation and to explain all the terms we will use
in the demo.

Demo: Adapting an Application
In the demo we will apply our tool to the real interfaces
of our ERP system.

1. We will present a very simple application that im-
ports information from external sources of data
into the system using its API.

2. We will present the outcome of the program -
the imported information will be visible in our
system.

3. We will adapt the interfaces and upgrade the sys-
tem.

4. Once again we will run our importing applica-
tion and show that the data has been imported
into the new version of the system.

B. Screenshots


