
Automatic Refactoring-Based Adaptation

Ilie Şavga and Michael Rudolf

Institut für Software- und Multimediatechologie, Technische Universität Dresden,
Germany, {is13|s0600108}@inf.tu-dresden.de

Abstract. Pure structural changes (refactorings) of a software com-
ponent, such as a framework, may introduce component mismatches
between it and components that used one of its previous versions. To
preserve existing applications, we propose to use the information about
refactoring to automatically adapt such mismatches.

1 Introduction

The components comprising a component-based application may have strong
inter-dependencies by making assumptions about the provided interfaces of the
components they cooperate with. In case one of these components evolves and
is upgraded to a new version, the changes applied to it may change its interface.
This, in turn, may lead to a component mismatch (components do not cooperate
as intended) that breaks the existing application. To preserve the latter, the
developer must perform component adaptation — a set of steps to detect and
bridge component mismatches. To reduce the costs and improve the quality of
adaptation process, it is crucial to, at least partially, automate it. In many cases,
though, it is not possible, because the component specification is usually limited
to the Application Programming Interface (API), which is too weak to enable
automatic mismatch detection and adaptation.

For example, consider a software framework — a software component that
embodies a skeleton solution for a family of related software products and is
instantiated by a means of modules containing custom code (plugins) [15]. A
framework may evolve considerably due to new requirements, bug fixing, or
quality improvement. As a consequence, existing plugins may become invalid;
that is, their sources cannot be recompiled or their binaries cannot be linked
and run with a new framework release. Either plugin developers are forced to
manually adapt their plugins or framework maintainers need to write update
patches. Both tasks are usually expensive and error-prone.

We argue that most of the changes causing signature component mismatch
(e.g., mismatch of method, parameter and type names, of method and parameter
types, of parameter order) can be automatically detected and resolved by using
the information about the code change. More specifically, we are focusing on
refactorings—behavior-preserving source transformations [19]1 — that are the

1 In accordance with [19], [12], [20] we consider the addition of functionality behavior-
preserving.



major cause of signature component mismatch comprising more than 80% of
problem-causing changes [9]. The intuition is that a refactoring operator can be
treated as a formal specification of a syntactic change and the information about
the component’s refactoring can be used to automate the adaptation.

Figure 1 shows, how we use the refactoring history to create adapters [13]
between the framework and plugins upon the release of a new framework version.
The adapters then shield the plugins by representing the public types of the old
version, while delegating to the new version. Adapter generation is not limited
to two consecutive versions; they can be generated for any previous API version.

delegate

generate

input

Legend

F
1

P
1

time time

Change

Specification

Generator
F
3

AL
1

AL
2

P
1 P

2
P
3

Fig. 1. Plugin adaptation in an evolving framework. In the left part, the framework
version F1 is deployed to the user, who creates a plugin P1. Later, two new framework
versions are released, with F3 as the latest one. While new plugins (P3) are developed
against the latest version, the existing ones (P1 and P2) are preserved by creating
adapter layers AL1 and AL2 (the right part).

Note the non-intrusive way of adaptation, that is, neither plugins nor the
framework are invaded by the adaptation code. Moreover, because we are gen-
erating binary adapters, the existing plugins remain binary compatible — they
link and run with a new framework release without recompiling [11].

The rest of the paper is organized as following: we sketch our approach of
using refactoring information to automate adaptation of signature mismatches
in Sect. 2, overview related work in Sect. 3, discuss open issues in Sect. 4 and
conclude with our main statement in Sect. 5.

2 Refactoring-Based Adaptation

Although refactoring preserves behavior, it changes syntactic component repre-
sentation, on which other components may rely. Figure 2 shows the application
of the ExtractSubclass refactoring to a framework class modeling customers. If
an existing plugin calling the method getDiscount() on an instance of Customer
is not available for update, it will fail to both recompile and link with the new
framework version due to the introduced signature mismatch.



Customer

+ getName()

+ getDiscount()

VIPCustomer

+ getDiscount()

Customer

+ getName()

Fig. 2. ExtractSubclass refactoring. The method getDiscount is moved from Customer
to its new subclass VIPCustomer.

Comebacks. To cope with the signature mismatches introduced by refactor-
ing operators, for each of the latter we formally define a comeback—a behavior-
preserving transformation that defines how a compensating adapter is constructed.
That is, we define an adaptation-oriented pattern problem/solution library of
transformations, where a problem pattern is the occurence of a framework refac-
toring and its solution is the corresponding comeback (adapter refactoring).2

Note, that a comeback differs from a refactoring inverse in that a comeback is
applied to adapters, and not to framework types. It is also different from refac-
toring undo - the latter is an un-execution of a (successfully applied) refactoring
operation.

Technically, a comeback is realized in terms of refactoring operators to be
executed on adapters. For some refactorings, the corresponding comebacks are
simple and implimented by a single refactoring. For example, to the refactoring
RenameClass (name, newName) corresponds a comeback consisting of a refac-
toring RenameClass (newName,name) that renames the adapter to the old name.
For other refactorings, their comebacks consist of sequences of refactorings. For
instance, the comeback of MoveMethod is defined by DeleteMethod and Ad-
dMethod refactoring operators, which sequential execution effectively move the
method between the adapters.

For an ordered set of refactorings that occured between two framework ver-
sions, the execution of the corresponding comebacks in the reverse order yields
the adaptation layer. Figure 3 shows the workflow of refactoring-based plugin
adaptation. First, we create the adaptation layer ALn (the right part of the
figure). For each public class of the latest framework version Fn we provide an
adapter with exactly the same name and set of method signatures. An adapter
delegates to its public class, which becomes the adapter’s delegatee. Once the
adapters are created, the actual adaptation is performed by executing comebacks
backwards with respect to the recorded framework refactorings, where a come-
back is derived using the description of the corresponding refactoring. When
all comebacks for the refactorings recorded between the last Fn and a previ-
ous Fn−x framework version are executed, the adaptation layer ALn−x reflects
the old functionality, while delegating to the new framework version. Because

2 A detailed description of our approach including formal comeback definition and
current results is presented in [22].



FnFn-x

Pn-x

r4

c1

evolution

adaptation

r3

c2

r2

c3

r1

c4

Framework site

Client site

execution flow

delegates-to

corresponds-to

ALnALn-x

Legend

Fig. 3. Adaptation workflow. To a set of refactorings (r1-r4) between two framework
versions (Vn−x, Vn, n > x > 0) correspond comebacks (c4-c1). Comebacks are executed
on the adaptation layer ALn backwards to the framework refactorings. The resulting
adaptation layer ALn−x delegates to the new framework, while adapting plugins of
version Pn−x.

the adaptation is performed at the framework site, it is transparent for plugins.
Neither manual adaptation nor recompilation of plugins is required.

Tool validation. We are evaluating our concept in an operational environ-
ment using a logic programming engine. For several refactorings we specified
the corresponding comeback transformations as Prolog rules and developed a
parser for the CIL code (as stored in .NET assemblies) in order to extract meta-
information about API types. This meta-information is used to create a fact
base, on which a Prolog engine then executes the required comebacks. Once
all comebacks are executed, the fact base contains the necessary information to
create adapters and is serialized back to assemblies.

For instance, for the ExtractSubclass refactoring introduced earlier in this
section, the execution by our tool of the CbExtractSubclass comeback yields
the corresponding binary adapter, the C# source code of which is provided in
Listing 1. The delegation field delegateeCustomer is initialized with an instance of
VIPCustomer and is used to forward the method calls getName and getDiscount.

Listing 1. C# code of the generated adapter
1 public class Customer {
2 protected VIPCustomer delegateeCustomer;
3

4 public Customer() {
5 delegateeCustomer = new VIPCustomer(); }
6

7 public string getName() {
8 return delegateeCustomer.getName(); }
9

10 public float getDiscount() {
11 return delegateeCustomer.getDiscount(); }
12 }



The following refactorings are currently supported by our tool: RenameMethod,
RenameClass, AddMethod, AddClass, MoveMethod, PullUpMethod, PushDown-
Method, ExtractSuperclass, ExtractSubclass, ExtractClass. Because we assume,
that all API fields are encapsulated (accessed by get/set methods), which is a
general requirement in our project, support for field refactorings is implied. The
addition of other supported refactorings is discussed in Sect. 4.

Terminology note. According to Becker et al. [4], our approach is a design-
time signature adaptation consisting of the following adaptation steps:

1. Detect mismatches. The semantics of refactoring is used to detect (or, more
precisely, predict) signature mismatches upon component upgrade.

2. Select adaptation measures. To bridge syntactic component mismatches in-
troduced by refactoring, we rely on the well-known Adapter design pattern
[13] that was shown to be ”very flexible as theoretically every interface can
be transformed into every other interface.” [4] More specifically, we use the
delegation variant of the pattern to support components written in languages
not supporting multiple class inheritance .

3. Configure selected measures. The library of pattern problem/solution is used,
where the information about a detected problem (refactoring) is used to
configure, or instantiate, the appropriate solution (comeback).

4. Predict the impact. The impact on the functionality is implied by the defi-
nition of the comebacks: because a comeback is a refactoring, its execution
will not change the behavior, whereas adapting the signature mismatch. The
impact on the non-functional properties (e.g. on performance), need to be
evaluated for each comeback separately and then for the possible adaptation
as a whole.

5. Implement and test the solution. We systematically construct adapters us-
ing predefined comeback library. Although the soundness of comebacks is
proved, the soundness of the generated adapters needs to be tested, too, to
avoid implementation bugs. We are developing a refactoring-driven testing
that aims for test generation based on the refactoring history. We will also
elaborate the benchmark strategy to estimate the performance pentalties
implied by delegation.

3 Related Work

To analyze the nature of the application-breaking changes, Dig and Johnson [9]
investigated the evolution of four big frameworks and discovered that most (from
81% up to 97%) of such changes were refactorings. The reason why pure struc-
tural transformations break clients is the difference between how a framework
is refactored and how it is used. For refactoring it is generally assumed, that
the whole source code is accessible and modifiable (the closed world assumption
[9]). However, the frameworks are used by plugins not available at the time of
refactoring. As a consequence, plugins are not updated correspondingly.

The existing approaches overcoming the closed world assumption in case of
component evolution can be divided into two groups. Approaches of the first



group rely on the use of a kind of middleware (e.g., [1], [2], [6], [18]) or, at least,
a specific communication protocol ([11], [17]) that connect a framework with its
plugins. This, in turn, implies a middleware-dependent framework development,
that is, the framework and its plugins must use an interface definition language
and data types of the middleware and obey its communication protocols.

The second group consists of approaches to distribute changes (including
refactorings) and to make them available for the clients remotely. The compo-
nent developer has to manually describe component changes either as different
annotations within the component’s source code ([3], [7], [21]) or in a separate
specification ([16], [23]). Moreover, the developer must also provide adaptation
rules, which are then used by a transformation engine to adapt the old applica-
tion code. Writing annotations is cumbersome and error-prone. To alleviate this
task, the ”catch-and-replay” approach [14] records the refactorings applied in an
IDE as a log file and delivers it to the application developer, who“replays” refac-
torings on the application code. Still, current tools do not handle cases when a
refactoring cannot be played back in the application context. For example, they
will report a failure, if the renaming of a component’s method introduces a name
conflict with some application-defined method. In addition, the intrusive way of
adaptation requires the availability of the application’s sources.

4 Discussion

Regarding our technology, several important issues are still open.
Approach generalization. Although we focus on mismatches caused by

component upgrade, the refactoring-based adaptation is in general applicable
to any occurence of a syntactic mismatch. For example, all adaptable signature
mismatches presented in [4] can be described as a result of refactoring. In case
of component integration, to automatically adapt such mismatches one could
describe them by corresponding refactorings and re-use the comeback library.

Applicability demarcation. We intentionally prohibit some refactorings
in our approach. Particularly, we do not allow for RemoveMethod and, hence,
RemoveClass to be applied as standalone refactorings. The main reason is that
in our project we consider the pure deletion of functionality that may still be in
use by old clients, as a sign of maintenance error and prohibit them (because in
fact they cannot be then considered refactorings). In other words, pure deletion
that is refactoring under the closed world assumptions cannot be considered as
such in a open world. Still, we allow such refactorings to be used in composite
refactorings (e.g., PushDownMethod), because the semantics of the latter permits
adaptation by preventing the information loss.

Limitations. Currently, only common class and method refactorings are
supported (listed in Sect. 2). One reason is implied by the state-of-the-art of the
refactoring research: some refactorings (e.g., ExtractInterface) cannot be spec-
ified using existing formalisms as these refactorings imply multiple inheritance
and the notion of interface. Moreover, there is no existing work for a certain
class of refactorings, namely those applied to generic types. In addition, for



some refactorings (e.g., those splitting/merging types), additional assumptions
under which the adaptation becomes possible need to be defined.

Going beyond refactorings. Besides information about the public types
and the refactoring history, our approach needs no additional component specifi-
cations. However, the latter are required to support modifications that go beyond
refactoring (e.g., protocol changes). To broden the range of supported changes,
one needs to investigate how to combine other adaptation techniques with the
refactoring-based approach.

Adaptation time variation. Although the adapters themselves are gen-
erated statically, nothing prevents us from shifting the actual adaptation from
design-time to the load- and run-time. In particular, one of our students investi-
gated the use of aspect-oriented techniques for adaptation, where the execution
of comebacks ends in an adaptation aspect [5].

Code generation. We deliberately left out the description of our actual
code generation. Still, there is a plenty of open issues, such as treating object
schizophrenia (implied by delegation), wrapping/unwrapping of API user-defined
types, and treatment of reflection calls.

Refactoring history acquisition and representation. As our approach
requires the information about refactorings, an importat issue is how it can be
obtained (e.g., by recording the applied refactorings in IDE [14], or detecting
them in the source code [24], [8]) and stored (e.g., in a refactoring-aware config-
uration management system [10]).

Verification. As mentioned in Section 2, we need to verify both the adapter
soundness and the performance implied by adaptation. Because in general the
plugins may not be available for running tests, static verification could be a
better choice comparing to run-time testing.

5 Summary

Our technology to retain binary compatibility of existing plugins implies adapta-
tion and requires the information about refactorings occured between framework
releases. For each refactoring there is a corresponding comeback that describes
how the adapters should be constructed. Execution of comebacks backwards with
regard to the framework refactorings yields the corresponding adapter layer. The
adaptation is performed at the framework site and is transparent for the clients.
We conclude with our main statement:

Treated as a formal specification of syntactic changes, refactoring can foster the
automated adaptation of signature component mismatches thus considerably

reducing the costs and increasing the quality of component adaptation.

References

1. CORBA homepage. http://www.corba.org.
2. Microsoft COM homepage. http://www.microsoft.com/Com/default.mspx.



3. I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class library migration.
In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on
Object oriented programming, systems, languages, and applications, pages 265–279,
New York, NY, USA, 2005. ACM Press.

4. S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli. To-
wards an engineering approach to component adaptation. In R. H. Reussner,
J. A. Stafford, and C. A. Szyperski, editors, Architecting Systems with Trustworthy
Components, volume 3938 of Lecture Notes in Computer Science, pages 193–215.
Springer, 2004.

5. C. Bitter. Preserving binary backward-compatibility using aspect-oriented tech-
niques. 2007. Master Thesis.

6. J. Camara, C. Canal, J. Cubo, and J. Murillo. An aspect-oriented adaptation
framework for dynamic component evolution. In 3rd ECOOP Workshop on Re-
flection, AOP and Meta-Data for Software Evolution, pages 59–71, 2006.

7. K. Chow and D. Notkin. Semi-automatic update of applications in response to
library changes. In ICSM ’96: Proceedings of the 1996 International Conference
on Software Maintenance, page 359, Washington, DC, USA, 1996. IEEE Computer
Society.

8. D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Automated detection of
refactorings in evolving components. In D. Thomas, editor, ECOOP, volume 4067
of Lecture Notes in Computer Science, pages 404–428. Springer, 2006.

9. D. Dig and R. Johnson. The role of refactorings in API evolution. In ICSM ’05:
Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 389–398, Washington, DC, USA, 2005. IEEE Computer Society.

10. D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen. Refactoring-aware configu-
ration management for object-oriented programs. In ICSE, 2007.

11. I. R. Forman, M. H. Conner, S. H. Danforth, and L. K. Raper. Release-to-release
binary compatibility in SOM. In OOPSLA ’95: Proceedings of the tenth annual
conference on Object-oriented programming systems, languages, and applications,
pages 426–438, New York, NY, USA, 1995. ACM Press.

12. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlisside. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts,
1995.

14. J. Henkel and A. Diwan. Catchup!: capturing and replaying refactorings to support
API evolution. In ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pages 274–283, New York, NY, USA, 2005. ACM Press.

15. R. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22–35, June 1988.

16. R. Keller and U. Hölzle. Binary component adaptation. Lecture Notes in Computer
Science, 1445:307–329, 1998.

17. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support for
type-safe dynamic java classes. In ECOOP ’00: Proceedings of the 14th European
Conference on Object-Oriented Programming, pages 337–361, London, UK, 2000.
Springer-Verlag.

18. F. McGurren and D. Conroy. X-adapt: An architecture for dynamic systems. In
Workshop on Component-Oriented Programming, ECOOP, Malaga, Spain, pages
56–70, 2002.

19. W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Urbana-
Champaign, IL, USA, 1992.



20. D. B. Roberts. Practical analysis for refactoring. PhD thesis, University of Illinois
at Urbana-Champaign, Urbana, Illinois, 1999.

21. S. Roock and A. Havenstein. Refactoring tags for automatic refactoring of frame-
work dependent applications. In XP’02: Proceedings of Extreme Programming
Conference, pages 182–185, 2002.

22. I. Savga and M. Rudolf. Refactoring-based adaptation for binary compatiblity
in evolving frameworks. In Proceedings of the Sixth International Conference on
Generative Programming and Component Engineering, Salzburg, Austria, October
2007. To appear.

23. I. Savga, M. Rudolf, J. Sliwerski, J. Lehmann, and H. Wendel. API changes - how
far would you go? In R. L. Krikhaar, C. Verhoef, and G. A. D. Lucca, editors,
CSMR, pages 329–330. IEEE Computer Society, 2007.

24. P. Weissgerber and S. Diehl. Identifying refactorings from source-code changes.
In ASE ’06: Proceedings of the 21st IEEE International Conference on Auto-
mated Software Engineering (ASE’06), pages 231–240, Washington, DC, USA,
2006. IEEE Computer Society.


