
Refactoring-Based Adaptation of Adaptation
Specifications

Ilie Şavga and Michael Rudolf

Institut für Software- und Multimediatechologie, Technische Universität Dresden,
Germany, {is13|s0600108}@inf.tu-dresden.de

Summary. When a new release of a component replaces one of its older versions
(component upgrade), changes to its interface may invalidate existing component-
based applications and require adaptation. To automate the latter, developers usu-
ally need to provide adaptation specifications. Whereas writing such specifications is
cumbersome and error-prone, maintaining them is even harder, because any evolu-
tionary component change may invalidate existing specifications. We show how the
use of a history of structural component changes (refactorings) enables automatic
adaptation of existing adaptation specifications; the latter are written once and need
not be maintained.

1 Introduction

A software framework is a software component that embodies a skeleton solution
for a family of related software products [17]. To instantiate it to a concrete ap-
plication, developers write custom-specific modules (plugins) that subclass and in-
stantiate public types of the framework’s Application Programming Interface (API).
Frameworks are software artifacts, which evolve considerably due to new or changed
requirements, bug fixing, or quality improvement. If changes affect their API, they
may invalidate existing plugins; that is, plugin sources cannot be recompiled or
plugin binaries cannot be linked and run with a new framework release. When up-
grading to a new framework version, developers are forced to either manually adapt
plugins or write update patches. Both tasks are usually error-prone and expensive,
the costs often becoming unacceptable in case of large and complex frameworks.

To reduce the costs of component upgrade, a number of techniques propose to,
at least partially, automate component adaptation [7, 9, 11, 16, 18, 21, 24]. These
approaches rely on and require additional adaptation specifications that are used
to intrusively update components’ sources or binaries. Component developers have
to manually provide such specifications either as different annotations within the
component’s source code [7, 11, 21] or in a separate specification [9, 16, 18, 24] used
by a transformation engine to adapt the old application code. However, in case of
large and complex legacy applications the cumbersome task of writing specifications
is expensive and error-prone.



2 Ilie Şavga and Michael Rudolf

time

Refactoring History

Generator F
3

A
1

A
2

delegate delegate

generate
generate

input

P
1 P

2
P
3

Fig. 1. Refactoring-based plugin adaptation. While a new plugin P3 can be devel-
oped using the latest framework version F3, existing plugins P1 and P2 are protected
by adapters A1 and A2.

To alleviate the task of writing adaptation specifications, Dig and Johnson [13]
suggest to reuse the information about the change to automatically perform adap-
tation. They investigated the evolution of five big software components, such as
Eclipse [3], and discovered that most (from 81% up to 97%) problem-causing API
changes were refactorings – behavior-preserving source transformations [19]. Com-
mon examples of refactorings include renaming classes and members to better reflect
their meaning, moving members to decrease coupling and increase cohesion, and
adding new and removing unused members. As at the time of framework refactoring
its plugins are usually not available for update, they are invalidated by refactoring.

Based on the results of [13], two techniques proposed independently by Dig et
al. in [14] and by us in [22] use refactoring information to insulate plugins from
framework changes. The refactoring information required can be logged automati-
cally (e.g., in Eclipse [3] or JBuilder [1]) or harvested semi-automatically [12] and
thus does not require additional specifications from developers. Figure 1 shows, how
we use the refactoring history to create adapters between a framework and some of
its plugins upon the release of a new framework version. The adapters then shield
the plugins by representing the public types of the old framework version, while
delegating to the latest one.

Although in general the refactoring-based adaptation is capable of adapting more
than 80% of problem-causing API changes, its restriction to pure structural changes
also entails its limitations. Other changes affecting existing plugins require either
manual or specification-based adaptation. For example, in a new framework release
developers may change the way message exchanges between the framework and its
plugins are performed. They introduce a new framework method and require calling
it (possibly, with a default parameter) from plugins. This change leads to a proto-
col mismatch characterized by improper message exchange among components [8],
in this case between the new framework and its old plugins that do not call the
new method. To bridge protocol mismatches, developers have to specify messages
that components may send and receive as well as the valid message exchange. Bas-
ing on these specifications protocol adapters that support proper intercomponent
communication are generated (e.g., [20, 24]).

However, once such specifications are provided, component evolution unavoid-
ably demands their maintenance, because evolutionary changes may alter component
parts on which existing specifications rely, rendering the latter useless. For instance,



Refactoring-Based Adaptation of Adaptation Specifications 3

if a framework type that is referred to in a specification is renamed, the specifi-
cation is no longer valid. In such cases, specifications must be updated along with
the change of the involved components, which raises the complexity and costs of
component adaptation.

Extending our refactoring-based approach [22], we want to maximally ease the
task of adapting remaining changes. For protocol changes, the corresponding spec-
ifications must be undemanding to write and not require maintenance throughout
subsequent component evolution. The main contribution of this paper is in enabling
component developers to write protocol adaptation specifications that are:

• in-time: specified at the actual time of component change. It is inherently easier
to specify the adaptation of small incremental changes upon their application
than to write large specifications involving complex component and change de-
pendencies in one big step upon a new component release.

• durable: valid at the time of their execution regardless of any component change
applied after the specification was written. This eliminates the need to maintain
specifications.

Given a protocol adaptation specification, we use the information about subse-
quent structural component changes to perform the aforementioned refactoring-
based adaptation and to shield the specification from those changes. In this way,
we adapt existing specifications in the sense that we preserve their validity in the
context of component evolution.

In Sect. 2 we sketch the refactoring-based adaptation by describing its main
concepts used throughout the rest of the paper. Section 3 discusses the notion of
protocol adapters in detail and continues with our main contribution – adaptation
of existing adaptation specifications using refactoring information – followed by the
discussion of relevant issues and empirical results in Sect. 4. We overview related
work in Sect. 5 and conclude in Sect. 6.

2 Refactoring-Based Adaptation

Although refactoring preserves behavior, it changes syntactic component represen-
tation, on which other components may rely. Figure 2 shows the application of the
ExtractSubclass refactoring to a component class modeling network nodes.1 If an
existing component LAN calling the method broadcast on an instance of Node is not
available for update, it will fail to both recompile and link with the new Node ver-
sion. As a consequence, any application using these two components will be broken
by the upgrade of Node.

2.1 Comebacks

In [22] we formally define our refactoring-based adaptation, so that the adapters
for the API refactorings could be constructed automatically and the soundness of

1 This example was inspired by the LAN simulation lab used at the University of
Antwerp for teaching refactoring [5]. For simplicity we omit several node methods
(e.g., send and receive).



4 Ilie Şavga and Michael Rudolf

ExtractSubclassNode

void broadcast(String msg)
String getName()

Version 1

Node

String getName()

Workstation

void broadcast(String msg)

Version 2

LAN

void enter(Node node){
node.broadcast(node.getName()+

“enters the network“);
}

Version 1

use
use

Fig. 2. ExtractSubclass refactoring. The method broadcast is moved from Node
to its new subclass Workstation and cannot be located from the existing LAN.

the adaptation could be ensured. Effectively, we roll back the changes introduced
by framework refactorings by executing their inverses. We cannot inverse directly
on framework types, because we want new plugins to use the improved framework.
Instead, we create adapters (one for each framework API type) and then inverse
refactorings on adapters. We call these inverses comebacks. For our running example
of ExtractSubclass, the compensating (object) adapter constructed by the come-
back of the refactoring is shown in Fig. 3.

Technically, a comeback is realized in terms of refactoring operators executed
on adapters. It is defined as a template solution and instantiated to an executable
specification by reusing parameters of the corresponding refactoring. For some refac-
torings, the corresponding comebacks are simple and implemented by a single refac-
toring. For example, to the refactoring RenameClass(name, newName) corresponds a
comeback consisting of a refactoring RenameClass(newName, name), which renames

Node

void broadcast(String msg)
String getName()

Adapter 1 to 2

Node

String getName()

Workstation

void broadcast(String msg)

LAN

void enter(Node node){
node.broadcast(node.getName()+

“enters the network“);
}

Version 1

use

use

Version 2

Fig. 3. Compensating adapter. The adapter represents the old Node and delegates
to the appropriate component methods.



Refactoring-Based Adaptation of Adaptation Specifications 5

F
n

F
n-x

P
n-x

r4

c1

evolution

adaptation

r3

c2

r2

c3

r1

c4

Framework site

Client site

execution flow

delegates-to

corresponds-to

AL
nAL

n-x

Legend

Fig. 4. Adaptation workflow. To a set of refactorings (r1–r4) between two framework
versions correspond comebacks (c4–c1). Comebacks are executed on the adaptation
layer ALn backwards to the framework refactorings. The resulting adaptation layer
ALn−x delegates to the latest framework version, while adapting plugins of version
Pn−x.

the adapter to the old name. For other refactorings, their comebacks consist of se-
quences of refactorings. For instance, the comeback of PushDownMethod is defined by
the DeleteMethod and AddMethod refactoring operators, the sequential execution of
which effectively moves (pushes up) the method between adapters. Moreover, com-
plex comebacks may be defined by composing other, more primitives comebacks.
This is the case for the comeback of ExtractSubclass, which is defined by combin-
ing the comebacks of PushDownMethod and AddClass.

For an ordered set of refactorings that occurred between two component versions,
the execution of the corresponding comebacks in reverse order yields the adapta-
tion layer. Figure 4 shows the workflow of refactoring-based adaptation in case the
component being upgraded is a framework.2 In a nutshell, we copy the latest API
of the framework and inverse all refactorings on it, so that the old API (mimicked
by the adaptation layer) is reconstructed fully automatically. First, we create the
adaptation layer ALn (the right part of the figure) that is a full copy of the lat-
est framework API delegating to the latest framework version. Therefore for each
API class of the latest framework version Fn we provide an adapter with exactly
the same name and set of method signatures. An adapter delegates to its public
class, which becomes the adapter’s delegatee. Once the adapters are created, the ac-
tual adaptation is performed by executing comebacks backwards with respect to the
recorded framework refactorings, where a comeback is derived using the description
of the corresponding refactoring. When all comebacks for the refactorings recorded
between the last and a previous framework version Fn−x are executed, the adapta-
tion layer ALn−x is syntactically identical to the API of Fn−x, while delegating to
the newest framework version.

2 Although we focus on object-oriented frameworks, the technique is similarly ap-
plicable to the upgrade of other types of object-oriented components, such as
software libraries.



6 Ilie Şavga and Michael Rudolf

2.2 Tool Support and Limitations

We implemented our adaptation tool ComeBack! [2] using a Prolog logic program-
ming engine. Currently we support Java and .NET components and can compensate
for twelve common class and method refactorings. We provide a comeback library
consisting of the corresponding comeback transformations specified as Prolog rules.
Given the latest framework binaries, the information about the API types (type and
method names, method signatures, inheritance relations) is parsed into a Prolog
fact base. After examining the history of framework refactorings, the corresponding
comebacks are loaded into the engine and executed on the fact base as described in
the previous section. Once all comebacks have been executed, the fact base contains
the information necessary for generating adapters (it describes the adapters) and is
serialized to the adapter binaries. Thereby we extract and transform the informa-
tion about the program and not the program itself; the adapter generation using
this information is then the final step. We also combined ComeBack! with Eclipse
to use the refactoring history of the latter.

Because comebacks are executed on adapters, for some refactorings comebacks
cannot be defined due to particularities of the adapter structure. For instance, it is
not possible to define a comeback for field refactorings (e.g., renaming and moving
public fields), because adapters cannot adapt fields directly. Instead, we require API
fields to be encapsulated. Moreover, for certain refactorings (e.g., adding parame-
ters), developers are prompted for additional information (e.g., default parameter
value) used to parameterize comebacks. In [23] we are making developers aware of
such limitations and suggest solutions whenever possible.

3 Adapting Protocol Adaptation Specifications

We envisage the combination of the refactoring-based adaptation with other adap-
tation techniques. In this section we discuss, how several important problems as-
sociated with protocol adaptation are solved by its integration with the comeback
approach. We start with a short introduction to and a running example of protocol
adaptation, discuss then problems introduced by subsequent component refactor-
ings, and stipulate a refactoring-based solution. Since our intention is to show prob-
lems and adopted solutions associated with the creation and maintenance of protocol
adaptation specifications, and not the specifications themselves, we use a simplified
example without going too much into the details of the specification formalism used.

3.1 Protocol Adaptation

Modifications of a component may affect its behavior, that is, the way it interop-
erates with other components (by exchange of method calls), leading to protocol
mismatches. Common examples of such mismatches are [8]:

• Non-matching message ordering. Although components exchange the same kind
of messages, their sequences are permuted.

• Surplus of messages. A component sends a message that is neither expected by
the connected component nor necessary to fulfill the purpose of the interaction.



Refactoring-Based Adaptation of Adaptation Specifications 7

LAN

Node

adapter spec.

component spec.

component spec.

LAN

Node

adapter spec.

component spec.

component spec.

LAN

Node

evolution

2. After Protocol Change 3. After Refactoring1. Initial Components 

Legend

describes
uses

Adapter Adapter

Fig. 5. Component Evolution. Initially the components cooperate as intended. The
second release of Node requires adaptation specifications, which are then invalidated
by a subsequent refactoring.

• Absence of messages. A component requires additional messages to fulfill the
purpose of the interaction. The message content can be determined from outside.

Consider the two components of Fig. 5.1 (their APIs are not shown in the figure).
The LAN component models a Token Ring local area network that accepts and
removes nodes via the methods enter(Node node) and exit(Node node) and asks a
node to create and forward a new packet using the method broadcast(String msg).
The Node component abstracts a separate network node and provides, among others,
the methods to enter and exit the network (enter(Node thisNode) and exit(Node
thisNode)). In addition, it has a method broadcast(String msg) that creates a packet
from the given message, marks the packet with the ID of the creator node, forwards
it to the successor node, and acknowledges (broadcastAck()) back to the network.
Since both components are of the same release 1, their APIs and protocols match,
so that there is no need for adaptation.

In the next release the developers generalized Node to increase its reusability
for other types of networks. In particular, they introduced a two-phase protocol
for entering the network: the node first asks for a permission to enter a network
enterReq(Node thisNode), passing in itself as the argument, and only if allowed
actually enters the network. The same changes were applied to the protocol for
leaving the network. In addition, there is no acknowledgement of the broadcast call
sent back from Node anymore. Instead, the node issues a ceased message when it
removes its previously created packet from the network.

This is an example of a protocol mismatch: although the components possess the
functionality required for an interaction, they cannot interact properly and require
adaptation. As the component API is limited to the syntactical representation of
the public component types and methods, the adaptation of protocol mismatches
requires additional specification of the components’ behavior interface and of the
valid mapping of component messages (Fig. 5.2). Listing 1 shows the behavior in-
terfaces of LAN and Node specified using the (simplified) formalism of Yellin and
Strom [24]. The interfaces (called collaborations in the listing) are described as a
set of sent and received messages augmented by a finite state machine specification.
The latter defines the legal sequences of messages that can be exchanged between
a component and its mate (init stands for the initial state, - for sending and + for



8 Ilie Şavga and Michael Rudolf

1 Collaboration Node {
2 Receive Messages{
3 mayEnter();
4 maynotEnter(String:why);
5 mayExit();
6 maynotExit(String:why);
7 broadcast(String message);
8 };
9 Send Messages{

10 enterReq(Node thisNode);
11 enter();
12 exitReq(Node thisNode);
13 exit();
14 ceased(Packet packet);
15 };
16 Protocol{
17 States{1(init),2,3,4,5};
18 1: -enterReq -> 2;
19 2: +maynotEnter -> 1;
20 2: +mayEnter -> 3;
21 3: +broadcast -> 3;
22 3: -ceased -> 3;
23 3: -exitReq -> 4
24 4: +mayExit -> 6;
25 5: +maynotExit -> 3;
26 6: -exit -> 1;
27 }
28 }
29 Collaboration LAN {
30 Receive Messages{
31 enter(Node node);
32 exit(Node node);
33 broadcastAck();
34 };
35 Send Messages{
36 broadcast(String message);
37 };
38 Protocol{
39 States{A(init),B};
40 A: +enter -> A;
41 A: +exit -> A;
42 A: -broadcast -> B;
43 B: +broadcastAck -> A;
44 }
45 }

List. 1: Component Behavior Specification

receiving messages). For instance, after sending the enter request, Node may only
accept either maynotEnter (line 19) or mayEnter (line 20) messages and, in the
latter case, can enter the network and broadcast packets (line 21). For clarity, the
states of Node are marked by numbers (1–6) and those of LAN by letters (A, B).

For these two behavior interfaces List. 2 provides a mapping specification Node-
LAN relating their states and messages. For each permitted combination of com-
ponent states (numbers of Node and letters of LAN enclosed in angle brackets) it
specifies the allowed transitions of both components and the valid memory state M
of messages being exchanged. For instance, after receiving an enter request from a
node (line 2), the adapter by default allows the node to enter the network (line 4)
and, when getting the node’s enter message, actually injects it into the LAN (line 6).



Refactoring-Based Adaptation of Adaptation Specifications 9

To keep track of the components’ states, the adapter updates them correspondingly
(again enclosed in angle brackets). To properly exchange the message data, certain
method parameters need to be saved by the adapter. For example, thisNode sent by
Node.enterReq may be sent to LAN only when the node actually enters the network
(execution of Node.enter()). Meanwhile the adapter saves the parameter internally
(shown as a call write to the implicitly generalized virtual memory). When the saved
parameters are not needed anymore, they are deleted from the virtual memory by
the adapter, as denoted by invalidate. Note also the handling of message absence
(broadcastAck to LAN, mayEnter and mayExit to Node) and surplus (ceased from
Node).

3.2 Refactorings Invalidate Specifications

Assume the specification is valid and the second release of the component was de-
ployed successfully. However, in release 3 the developers realized that the broadcast
method does not belong to every node of a network, but only to certain ones. In
particular, workstation nodes may create and then broadcast packets, but print
servers may not. To properly model this design requirement and avoid the abuse
of the method, the developers applied the ExtractSubclass refactoring, effectively
subclassing Node with a Workstation class and moving (pushing down) the method
broadcast to the latter, as shown in Fig. 2 on page 4.

The refactoring will clearly invalidate the interface specification of Node (lines 7
and 21) and, hence, a part (lines 7–9) of the existing NodeLAN specification
(Fig. 5.3). The situation aggravates with the growing number of releases and chain-
ing of interdependent modifications. For instance, the developers of Node could
later (1) rename (RenameMethod refactoring) the method broadcast to originate in
order to reuse it also for multicasting, and (2) add a parameter to maynotEnter
(AddParameter refactoring) to specify the reason of rejecting the entrance.

In general, any syntactic change affecting components referred to in specifications
will invalidate the latter. The reason is that by changing the syntactical represen-
tation, refactoring modifies the initial context on which the specifications depend.

1 /*LEGEND M0={} M1={thisNode} M2={message}*/
2 <1,A,M0>: +enterReq from Node -> <2,A,M1>, write(thisNode);
3 <2,A,M1>: -mayEnter to Node -> <2,A,M1>;
4 <2,A,M1>: +enter from Node -> <3,A,M1>;
5 <3,A,M1>: -enter to LAN -> <3,A,M0>,
6 node = read(thisNode), invalidate(thisNode);
7 <3,A,M0>: +broadcast from LAN -> <3,A,M2>, write(message);
8 <3,A,M2>: -broadcast to Node -> <3,B,M0>,
9 message = read(message), invalidate(message);

10 <3,B,M0>: +broadcastAck to LAN -> <3,A,M0>;
11 <3,A,M0>: -ceased from Node -> <3,A,M0>;
12 <3,A,M0>: -exitReq from Node -> <4,A,M1>, write(thisNode);
13 <4,A,M1>: +mayExit to Node -> <4,A,M1>;
14 <4,A,M1>: -exit from Node -> <5,A,M1>;
15 <5,A,M1>: +exit to LAN -> <5,A,M0>,
16 node = read(thisNode), invalidate(thisNode);

List. 2: Mapping Specification



10 Ilie Şavga and Michael Rudolf

Node

LAN

Node

adapter spec.

component spec.

component spec.

Node

LAN

Node

adapter spec.

component spec.

component spec.

Node

LAN

Node

adaptation

adaptation

 layer

2. Before Protocol Adaptation 1. Before Comeback Adaptation3. Final Adapter

Legend

describes
uses

Fig. 6. Component Adaptation. The comeback execution reestablishes the context
of adaptation specifications. They can then be executed directly on adapters to avoid
performance overhead.

Either the specifications have to be updated to match the new context or the context
itself has to be recovered. We perform the latter using comebacks.

3.3 Rescuing Specifications by Comebacks

As described in Sect. 2, the execution of comebacks in reverse order with regard to
their corresponding refactorings yields an adaptation layer, which wraps new compo-
nent functionality in terms of an old API syntax. Besides automatically bridging the
signature mismatches, this execution leads to another important result – it reestab-
lishes the context for previously written adaptation specifications. The intuition is
that by effectively inverting refactorings on adapters, comebacks reconstruct the
“right” syntactic names used in the specifications [22].

Figure 6.1 shows the state of adaptation before executing the comeback of
ExtractSubclass. In between the LAN and Node components there is the adapter
component (also called Node), possibly created in a step-wise manner by previously
executed comebacks. At this stage, the NodeLAN specification is not (yet) valid.
Now the comeback of ExtractSubclass transforms the adapter and leads to the
situation shown in Fig. 6.2. Because the comeback inverted its corresponding refac-
toring on the adapter, the latter has exactly the same syntactic form as the original
component Node before ExtractSubclass in Fig. 5.2. At this stage NodeLAN be-
comes valid again and can be used to derive the corresponding adapter. Intuitively,
the comebacks reconstruct backwards the public types to which the specification
relates; the only difference is that now (some of) these types are adapters. As a
consequence, the developer can specify durable adapters at the time of the actual
change.

There is still an important difference between the two middle parts of the Figs. 5
and 6: while in Fig. 5.2 the adapter is generated between two initial components,
in Fig. 6.2 it is generated between the LAN component and the previously derived
adapter leading to stacking of adapters. Although not affecting the actual func-
tionality, adapter stacking may considerably decrease the performance due to the



Refactoring-Based Adaptation of Adaptation Specifications 11

additional layer of redirection. In systems where the quality of service requires a
certain level of performance, the performance penalties may become unacceptable.

In our ComeBack! tool we address this performance issue by integrating the pro-
tocol adaptation machinery into the existing refactoring-based environment. Given
protocol adaptation specifications, the validity of which is proved at the specifica-
tion level, we translate them into a corresponding set of Prolog facts and rules. The
execution of these rules at the time of protocol adaptation updates the (adapter)
fact base created by previously executed comebacks and protocol adapters. Because
the description of the protocol adapter is thus effectively embedded into the fact
base, no separate adapter is required (Fig. 6.3).3

Technically, because we assume correctness of specifications, we do not have
to implement their state machines. By construction, the client components behave
according to the state automaton before the upgrade and a valid specification does
not change that. In fact, the only state the generated adapters maintain at runtime
is the pointer to their delegatees and a storage for temporarily saved messages to
implement the write and read operations of List. 2. As a consequence, the task of
integrating both adaptation approaches is reduced to generating custom adapter
methods that (1) read and write message contents to a local backing-store, such as
a hashtable (to save and retrieve data exchanged), (2) perform actual delegation,
(3) send default messages (in case of message absence), or (4) do nothing (in case
of message surplus).

As an alternative to the backward comeback execution that recovers the specifi-
cation context, the specifications themselves could be updated to match the updated
components. For each refactoring one could define a special operator to update af-
fected specifications. A (forward) execution of these operators along the refactoring
history would produce the correct specifications. Although this approach is appropri-
ate for the formalisms that combine signature and protocol adaptation in the same
specifications (e.g., [9, 16]), it has several drawbacks. First, one needs to specify sig-
nature adapters manually, which is avoided in the comeback approach. Second, the
operators for specification update would be dependent on and need to be rewritten
for any new formalism used. Third, and most important, the formalisms themselves
would need to be extended, since none of them provides any means for reflecting
such changes in the specifications (e.g., that some functionality of Node is to be
found in Workstation in the new release).

4 Evaluation

We performed two case studies using small-to-medium size frameworks. Using API
documentation and clients, for each framework we investigated changes between four
of its major versions. Gradually, the plugins of the first major version were manually
adapted to compile and run with the second, third and fourth framework versions.
Whenever possible, such adaptation was performed by refactoring. In such a way we
discovered exactly the backward-incompatible framework changes and, where pos-
sible, modeled them as refactorings. For all refactorings detected the corresponding

3 One of the main requirements of our technology – the total order of changes in
the component history – is realized using timestamps.



12 Ilie Şavga and Michael Rudolf

comebacks were specified. For the remaining changes we investigated whether they
affected message exchange between clients and the framework.

In the first case study we investigated JHotDraw [4], a well-known Java GUI
framework. We used its versions 5.2, 5.3, 5.4, and 6.0 as well as four sample clients
delivered with the version 5.2. We discovered eight backward-incompatible changes
between versions 5.2 and 5.3, three changes between 5.3 and 5.4 and one change
between 5.4 and 6.0. In total 12 changes were discovered, 11 (92%) of them being
refactorings. The exception was the change of a collection type from the built-in
Java Enumerator to the JHotDraw user-defined FigureEnumerator. It could neither
be modeled as a refactoring nor as a protocol mismatch.

For the second case study we used SalesPoint [6], a framework developed and
used at our department for teaching framework technologies. We used the framework
versions 1.0, 2.0, 3.0 and 3.1 as well as two clients (student exercises) developed with
the framework version 1.0. The first client reused mostly business logic of the frame-
work. In total 48 changes were discovered, 47 (97.9%) of them being refactorings.
The remaining one was the change of a default action (throwing an exception in-
stead of doing nothing) and we compensated for it with the help of the corresponding
protocol adapter.

Besides reusing the framework’s business logic, the second SalesPoint client also
made heavy use of the framework’s GUI facilities, which changed considerably be-
tween the framework versions. Whereas in version 1.0 the GUI event handling was
implemented solely by the framework, in version 2.0 (due to the switch to a new Java
version) its implementation was based on the Java event handling. As a consequence,
for the second client only about 70% (49 in total) of the changes could be consid-
ered refactorings. About 90% (16 in total) of the remaining backward-incompatible
changes were protocol changes, in particular, of event handling in the GUI. Since we
intended to explore the possibility of combining our refactoring-based adaptation
with protocol adaptation, and not the full-fledged implementation of the latter, we
implemented protocol adapters only for two selected protocol mismatches.

All in all, our results confirm the importance of refactorings for API evolution
of software components previously pointed out by Dig and Johnson [13]. Moreover,
in our case studies most of the remaining changes beyond refactorings could be
modeled as protocol changes. However, the complexity of protocol adaptation in
combination with refactoring-based adaptation may vary considerably depending
on change particularities and therefore needs further investigation.

5 Related Work

As mentioned in the Introduction, most of the adaptation approaches [7, 9, 11,
16, 18, 21, 24] require additional adaptation specifications from developers. Recent
research focused on how specific properties of certain modifications (e.g., behavior
preservation of refactorings, deadlock-free protocol changes) can be proved statically
and used to automate adaptation. For instance, the “catch-and-replay” approach [15]
records the refactorings applied in an IDE as a log file. The file can be either delivered
to the application developer, who “replays” refactorings on the application code
(invasive adaptation), or used to generate binary adapters [22, 14]. These approaches,
however, do not discuss adaptation of changes beyond refactorings.



Refactoring-Based Adaptation of Adaptation Specifications 13

In the same way, behavior adaptation is driven by the idea of capturing impor-
tant behavioral component properties to reason about protocol compatibility, dead-
lock freedom, and synchronization of distributed components as well as to (semi-)
automatically derive adapters and check for their correctness. Building on the sem-
inal paper of [24], a number of approaches used, for example, label transition sys-
tems [10], message system charts augmented with temporal logic specifications [16],
or process algebra [9] for specification of behavior and adapters. Although several
approaches (most notably [9, 16]) address signature mismatches as well, their spec-
ifications are embedded into behavior specifications and suffer from the same main-
tenance problems we discussed in this paper.

6 Conclusion

Besides automatically adapting most of the component changes, our comeback ap-
proach fosters component maintenance in two ways. First, because refactoring-based
adaptation only requires the new component API and the refactoring history, de-
velopers do not need to specify and later maintain specifications to compensate
for structural changes. Second, for remaining changes of components’ behavior de-
velopers are able to write in-time and durable protocol adaptation specifications,
which are easier to specify and do not need to be maintained. Their automatic
adaptation is implied by the particularities of our approach and comes “for free,”
as no additional means is required. We stipulate that the so-alleviated adaptation
and maintenance not only reduce the costs and improve the quality of component
upgrade but also relax the constraints on the permitted API changes allowing for
appropriate component evolution.

Acknowledgement. We thank Mirko Seifert and our anonymous SERA’08 reviewers
for their valuable comments.

References

1. Borland JBuilder. http://www.codegear.com/products/jbuilder

2. ComeBack! homepage. http://comeback.sf.net

3. Eclipse Foundation. http://www.eclipse.org

4. JHotDraw framework. http://www.jhotdraw.org

5. LAN-simulation lab session. http://www.lore.ua.ac.be

6. SalesPoint homepage. http://www-st.inf.tu-dresden.de/SalesPoint/v3.1

7. Balaban, I., Tip, F., Fuhrer, R.: Refactoring support for class library migration.
In: OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on
Object oriented programming, systems, languages, and applications, pp. 265–
279. ACM Press, New York, NY, USA (2005)

8. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.:
Towards an engineering approach to component adaptation. In: R.H. Reuss-
ner, J.A. Stafford, C.A. Szyperski (eds.) Architecting Systems with Trustwor-
thy Components, Lecture Notes in Computer Science, vol. 3938, pp. 193–215.
Springer (2004)



14 Ilie Şavga and Michael Rudolf

9. Brogi, A., Canal, C., Pimentel, E.: Component adaptation through flexible sub-
servicing. Science of Computer Programming 63(1), 39–56 (2006)

10. Canal, C., Poizat, P., Salaün, G.: Synchronizing behavioural mismatch in soft-
ware composition. In: R. Gorrieri, H. Wehrheim (eds.) FMOODS, Lecture Notes
in Computer Science, vol. 4037, pp. 63–77. Springer (2006)

11. Chow, K., Notkin, D.: Semi-automatic update of applications in response to
library changes. In: ICSM ’96: Proceedings of the 1996 International Conference
on Software Maintenance, p. 359. IEEE Computer Society, Washington, DC,
USA (1996)

12. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automated detection of
refactorings in evolving components. In: ECOOP’06: European Conference on
Object-Oriented Programming, Lecture Notes in Computer Science, vol. 4067,
pp. 404–428. Springer (2006)

13. Dig, D., Johnson, R.: The role of refactorings in API evolution. In: ICSM ’05:
Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM’05), pp. 389–398. IEEE Computer Society, Washington, DC, USA (2005)

14. Dig, D., Negara, S., Mohindra, V., Johnson, R.: ReBA: Refactoring-aware bi-
nary adaptation of evolving libraries. In: ICSE’08: International Conference on
Software Engineering. Leipzig, Germany (2008). To appear

15. Henkel, J., Diwan, A.: Catchup!: capturing and replaying refactorings to support
API evolution. In: ICSE ’05: Proceedings of the 27th International Conference
on Software Engineering, pp. 274–283. ACM Press, New York, NY, USA (2005)

16. Inverardi, P., Tivoli, M.: Software architecture for correct components assem-
bly. In: Formal Methods for Software Architectures, Lecture Notes in Computer
Science, vol. 2804, pp. 92–121. Springer (2003)

17. Johnson, R., Foote, B.: Designing reusable classes. Journal of Object-Oriented
Programming 1(2), 22–35 (1988)

18. Keller, R., Hölzle, U.: Binary component adaptation. In: ECOOP’98: Euro-
pean Conference on Object-Oriented Programming, Lecture Notes in Computer
Science, vol. 1445, pp. 307–329. Springer (1998)

19. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University
of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA (1992)

20. Reussner, R.: The use of parameterised contracts for architecting systems with
software components. In: J. Bosch, W. Weck, C. Szyperski (eds.) WCOP’01:
Proceedings of the Sixth International Workshop on Component-Oriented Pro-
gramming (2001)

21. Roock, S., Havenstein, A.: Refactoring tags for automatic refactoring of frame-
work dependent applications. In: XP’02: Proceedings of Extreme Programming
Conference, pp. 182–185 (2002)

22. Şavga, I., Rudolf, M.: Refactoring-based adaptation for binary compatiblity in
evolving frameworks. In: GPCE’07: Proceedings of the Sixth International Con-
ference on Generative Programming and Component Engineering, pp. 175–184.
ACM, Salzburg, Austria (2007)

23. Şavga, I., Rudolf, M., Lehmann, J.: Controlled adaptation-oriented evolution of
object-oriented components. In: IASTED SE’08: Proceedings of the IASTED In-
ternational Conference on Software Engineering. ACTA Press, Innsbruck, Aus-
tria (2008)

24. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors.
ACM TOPLAS: ACM Transactions on Programming Languages and Systems
19(2), 292–333 (1997)


