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ABSTRACT

By introducing syntactic and semantic changes, the
upgrade of a software component may invalidate ex-
isting applications that use one of its previous ver-
sions. Existing adaptation approaches to compensate
for such changes rely on and, hence, are limited to
certain change specifications. In addition to using
an adaptation technology, the developer needs to be
guided in the way the component should be evolved
in order to enable automatic adaptation and avoid
semantic inconsistencies. Based on our experience,
we describe problems common to different adaptation
techniques and give advice on how to control yet not
restrict component evolution.
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1 Introduction

If a component of an existing application is upgraded,
its new version may not cooperate with other com-
ponents as intended, thus breaking the application.
To achieve component backward-compatibility (i.e., its
new version can substitute a previous one without af-
fecting existing applications), the developer is forced
either to limit the changes applicable to a compo-
nent or to manually solve component incompatibili-
ties. For example, consider a software framework — a
software component that embodies a skeleton solution
for a family of related software products and is instan-
tiated by modules containing custom code (plugins)
[1]. A framework may evolve considerably due to new
requirements, bug fixing, or quality improvement. As
a consequence, existing plugins may become invalid;
that is, their sources cannot be recompiled or their bi-
naries cannot be linked and run with a new framework
release. Framework maintainers must either restrict
themselves to a limited set of repair changes or man-
ually adapt plugins. The former decreases the value
of component evolution quickly resulting in software
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Figure 1. Plugin adaptation in an evolving framework.
In the left part, the framework version F1 is deployed
to the user, who creates a plugin P1. Later, two new
framework versions are released, with F3 as the latest
one. While new plugins (P3) are developed against
the latest version, the existing ones (P1 and P2) are
preserved by creating adapter layers AL1 and AL2.

entropy [2], the latter is usually expensive and error-
prone.

To preserve backward-compatibility, while still
permitting developers to apply a wide range of evolu-
tionary changes, a number of approaches (e.g., [3], [4],
[5] and [6]) rely on change specifications, to automat-
ically adapt components upon upgrade. For instance,
our approach presented in [7] uses the history of struc-
tural changes (refactorings)1 to automatically preserve
binary framework backward-compatibility — existing
plugins link and run with a new framework version
without recompiling [10]. Upon the release of a new

1Refactoring plays an indispensable role in framework evolu-
tion [8] and, according to [9], is the cause of more then 80% of
application-breaking changes.



framework version we create adaptation layers that are
placed between the framework and plugins (Figure 1).
The adapters [11] bridge the mismatches of component
interfaces caused by framework refactorings and are
automatically derived based on the semantics of the
latter. As we aim for binary backward-compatibility,
our adaptation is performed on the binary level, which
a priori enables more powerful adaptation strategies
(e.g., by directly specifying method receivers, binary
versions and linker-specific instructions).

We stipulate, that although specification-based
component adaptation is a powerful means to sup-
port backward-compatibility, it alone is not enough
to guarantee a sound software component evolution.
Due to various particularities of used object-oriented
programming languages and different possible imple-
mentation strategies, the developers additionally need
a carefully elaborated guideline on how to define and
change the framework, while still permitting effective
and efficient component adaptation. The main contri-
bution of this paper is to identify and make the devel-
opers aware of several important problems and their
corresponding solutions characteristic to the upgrade
of object-oriented components, in particular frame-
works. The paper is an important step towards one
of our main research goals — the elaboration of an
adaptation-aware guide that will support developers
in defining and evolving backward-compatible frame-
works. We argue furthermore, that although the fol-
lowing discussion was driven by problems identified in
our refactoring-based adaptation, it is also relevant for
most of the existing adaptation approaches.

The following Sect. 2 sets the context of our dis-
cussion and presents the main contribution of the pa-
per — a list of problems and solutions important for
object-oriented framework adaptation. We overview
related work in Sect. 3, discuss additional issues in
Sect. 4 and conclude in Sect. 5.

2 Controlled Adaptation-Oriented

Framework Evolution

In this section we demarcate issues relevant for com-
ponent upgrade (focusing on white- and black-box
.NET and Java frameworks with dynamic binding,
method overriding and callback types), describe as-
sociated problems and suggest appropriate solutions.
They were discovered and developed in the course of a
collaboration project with our industrial partner Co-
march [12].

2.1 Controlled Change

In our refactoring-based approach most of the refactor-
ings are adapted automatically; however, several cases
must be considered additionally:

2.1.1 Available Functionality

Although most of the refactorings are adaptable, there
are at least two, namely Remove Method and Remove
Class, which are not and must therefore be prohibited.
The main reason is that the pure deletion of compo-
nent functionality, the use of which by clients cannot
be checked, as in the case of a framework, should be
considered a maintenance error.

Solution. Apply only refactorings which seman-
tics prevent information loss. For example, the two
refactorings mentioned can be used in composite refac-
torings (e.g., the use of Remove Method in Push Down
Method), because the semantics of the latter permits
adaptation without loosing framework functionality.

2.1.2 Verified Semantics

If the framework developer intentionally changes the
framework’s behavior, a decision has to be made,
whether the change should be visible to the existing
plugins. For example, if the default tax rate used in
the framework has changed, it is usually desirable to
reveal it to the clients. In contrast, if the order of
framework events, on which the application function-
ality may rely, has changed, the application can break.

Solution. In the first case the developer who
changes a method’s visible behavior must also re-
flect the change in a test, to check that the behav-
ior changed as intended. Whereas such test is devel-
oped against the new framework functionality, it must
run on and verify adapters. In the second case the
application-breaking changes need to be compensated
for using appropriate adaptation techniques (e.g., pro-
tocol adaptation).

2.1.3 New Abstract API Methods

A sign of framework maturing is the appearance of new
abstract methods in its API types (abstract classes
and interfaces). Because an abstract method repre-
sents a part of the required contract [13], which its
implementee must fulfill, the introduction of new ab-
stract methods makes the required contract stronger,
thus breaking existing clients.

Solution. A solution is to specify a default imple-
mentation of the new method. If it is in an abstract
class, the developer should declare it as protected, in-
dicating that it can be overridden. If it is in an inter-
face, the implementation must be provided separately
and the adapter tool instructed correspondingly. The
same approach applies to more general changes from
concrete to abstract API types.

A different solution would be to follow the “2”
convention [14] as it was done, for instance, with the
Java interface java.awt.LayoutManager: in order not
to change the contract between the framework and



clients, a new interface or abstract class extending the
old one is introduced and the use of the older one is dis-
couraged through deprecation. Furthermore, the name
of the new artifact equals the name of the old interface
or abstract class extended by a “2” (as in LayoutMan-

ager2).

2.1.4 Modification of Generic Types

In case of changes involving generic types, two main
scenarios have to be considered. First, a non-generic
type can be transformed into a generic one [15]. Old
plugins are then not aware of how to use the new
generic type lacking appropriate information about
its type parameters. Second, a generic type can be
changed into a non-generic one, thereby possibly nar-
rowing its use context. For example, if the signature
of a method has changed from T method() to String

method(), the call will fail in case T was instantiated
with Integer.

Solution. The first case represents a type widen-
ing conversion and, hence, can be adapted in general.
The main difference from the adaptation of ordinary
types is that the adapter needs to provide a default
type parameter in order to instantiate its adaptee (i.e.,
the generic type). For that, it is usually sufficient to
pass the upper bound of the type parameter (which is
the root of the language’s inheritance tree, e.g., Ob-
ject, in case of implicit upper bound). The second
case must be prohibited in general, unless there is a
way to ensure the safeness of type narrowing conver-
sion. For example, it is safe to change the signature of
a method T method(), where T has the upper bound
Customer, to Customer method().

2.2 Controlled Design

The adapter design pattern relies on the method for-
warding technique to wrap the functionality of an
adaptee into an adapter. This technique may be ren-
dered insufficient by the way the adaptee type is de-
fined (too much of its information is revealed) or used
(too strong assumptions about its structure are made).

2.2.1 Encapsulated Fields

In accordance to common object-oriented principles,
classes’ fields must not be publicly accessible. This
rule becomes especially important in case of method
forwarding used, for instance, in our adaptation ap-
proach — if not respected, changes applied to the fields
in a new component version are directly visible to the
clients and cannot be shielded by an adapter.

Solution. Fields ought to be encapsulated prop-
erly by declaring them private and providing accessor
methods. In this case field adaptation is entailed by
the adaptation of the corresponding accessor methods.

2.2.2 Careful Reflection

Reflection is a technique for working with the meta
level of an object-oriented system. This implies that
the structure of objects, that is, of classes, fields, and
methods, is laid open to the user of reflection. Of-
ten, having access to that meta level can considerably
ease implementing certain functionality. However, in
many cases this introduces a dependency on certain
properties of an object’s class thus breaking encapsu-
lation. For example, a plugin might read raw string
data and use them to reflectively create an instance of
a type not known at compile time. If this is not done
carefully (e.g., by just assuming the type has only one
constructor), a runtime error might arise, because the
type adapter adds an additional constructor dedicated
for wrapping objects, invalidating thus the client as-
sumption. This scenario is depicted in Fig. 2.

Solution. A proper use of reflection entails the
complete verification of obtained references to meta-
level structures, that is, a program has to check,
whether all parameter types (and not just the name)
of a method or constructor match the expected ones
before an invocation.

2.2.3 Custom Serialization

Assume, an instance of a framework class is seri-
alized; in a new framework version, the class is
changed and, hence, adapted. The default seri-
alization of neither .NET (provided by the Sys-

tem.Runtime.Serialization namespace) nor Java
suffices to restore the serialized instance, due to the
structural mismatch of the adapter that contains
adaptation-specific members (e.g., the delegation field)
and of the original class.

Solution. Whenever serialization is needed, a cus-
tom serialization process has to be provided to prop-
erly initialize the delegation field. For example, in
.NET this can be achieved by implementing the in-
terface ISerializable, while in Java the two addi-
tional methods readObject and writeObject have to
be provided.

2.3 Controlled Adaptation

Any adaptation technology has certain limitations, ac-
cording to which adaptation decisions have to be made.
In other words, the adaptation itself must also be con-
trolled and the framework developer must be made
aware of the adaptation decisions that may influence
eventual framework evolution.

2.3.1 Controlled Object Schizophrenia

Delegation as a re-use mechanism introduces object
schizophrenia [16] due to the dichotomy of the adapter



Framework type
1 public class Customer {
2 private String name;
3

4 public Customer(String name) {
5 this.name = name;
6 //initialize other fields
7 }
8

9 //other methods
10 // and fields
11 }

Adapter
public class Customer { 1

//framework type for delegation 2

private _Customer d; 3

4

public Customer(_Customer d) { 5

this.d = d; 6

} //wrapping constructor 7

8

public Customer(String name) { 9

d = new _Customer(name); 10

} //initializing constructor 11

//delegation methods 12

} 13

Plugin
1 public class MyPlugin {
2 public void DoSomething() {
3 String value; //read in value
4 Type target; //find target type
5 object o = target.GetConstructors()[0].Invoke(value);
6 }
7 }

Figure 2. C# code of a dangerous use of reflection. The upper part shows the original framework type and the
generated adapter. The client code in the lower part will invoke the wrong constructor when run on the adapter.

and adaptee objects: what is intended to appear as a
single object is actually broken up into two or more,
each possessing its own identity, state, and behavior.
This may lead to various problems, when an object is
unable to properly respond to messages, although the
necessary information is available.

In our case, if not handled properly, adapters may
obtain their own object identity different from the cor-
responding framework objects (i.e., adaptees). As a
consequence, the applications relying on object iden-
tity may malfunction.

Solution. Our solution makes use of the specific
implementation of the object identity concept in Java
and .NET, where it is exposed by predefined methods.
In our adaptation technique the adapters also forward
these methods to the adaptees thereby preserving ob-
ject identity. However, comparison using object ref-
erences instead of these methods may invalidate our
approach and should be prohibited.

2.3.2 Adapting User-defined Types

In any object-oriented framework there are API meth-
ods that accept and/or return user-defined types —
types other then those built into the framework im-
plementation language. Because these types can also
be apt for change and, hence, adaptation, the wrap-
ping/unwrapping strategy is needed.

Solution. Whenever such a type is passed by a
plugin as an argument to an adapter method call, it
has to be unwrapped (to the corresponding framework
type) before the adapter will delegate to the appropri-
ate framework method. Analogously, when a method
call on the delegatee returns a (framework) type, it

Adapter Method
1 public string FormatData(object data, string format) {
2 try {
3 return delegatee.FormatData(data, format);
4 } catch (Exception ex) { //catch every exception
5 if (isFWException(ex)) { //check for custom exceptions
6 throw(adapt(ex)); //wrap FW exception in adapter
7 } else {
8 throw(ex); //just rethrow ex
9 }

10 }
11 }

Figure 3. Adapting exception handling.

has to be wrapped to the corresponding adapter type
before returning it to the plugin. Whereas wrapping
can be done by using the adapter constructor, unwrap-
ping needs a dedicated adapter method returning the
delegatee. This method has to be embedded into the
adaptation strategy and protected from being overrid-
den by a plugin.

2.3.3 Exceptions

There are three issues to be considered with regard to
exception adaptation. First, the exception classes may
change in the same way as ordinary types (e.g., renam-
ing of exception classes and methods). Second, the ex-
ception objects also need to be adapted at run-time,
like the instances of user-defined types. Third, the
influence on a particular adaptation strategy is driven
by the specific implementation language. For instance,
in Java exceptions may belong to the signature of the



methods (checked exceptions), whereas in .NET they
never do.

Solution. Adaptation of exception types is im-
plemented similarly to adapting user-defined types as
described in the previous subsection. That is, for
the changed exception classes adapter classes are cre-
ated, the instances of which are used at run-time for
the wrapping and unwrapping of exception objects
(Fig. 3). Moreover, the adaptation strategy must be
aware of language particularities with regard to excep-
tions and handle them appropriately. For example, if
there are checked exceptions, they have to be treated
as a part of the method signature.

2.3.4 Runtime Type Checks

When generating the adapter for a generic type, the
generator has no information about which type will
actually be used upon adapter instantiation. The
adapter itself has to find out at run-time, whether it
was passed a custom (and, hence, adapted) type or a
built-in type. In the former case, the adapter has to
unwrap the type before sending it to the framework,
while in the latter the type is forwarded as it is.

Solution. To perform this runtime check, the
adapter needs a common criterion to decide, whether a
parameter type is an adapter itself. This can be done
with the help of meta-data (e.g., custom attributes in
.NET or annotations in Java), which can be created
and used to mark the adapters automatically by the
adapter generator.

3 Related Work

Usually the way developers should change a compo-
nent is defined either implicitly (e.g., implied by the
programming practice in general, or by some shared
knowledge in a certain developer community in the
form of “do not do that, unless you do it in that way”)
or described in the form of best practice tutorials and
handbooks.

Basing on Design By Contract paradigm [13],
des Rivières showed how changes of package, type,
method and variable contracts can potentially break
a client [14]. A method contract is an agreement be-
tween the method provider (e.g., a framework) and
a method client (e.g., a plugin).2 It consists usually
of a precondition (what a method requires from its
clients), a postcondition (what a method guarantees
to its clients), and an invariant (what is guaranteed
not to change during the method execution). If the
precondition of a framework method becomes stronger
in a new release, it may break existing clients (intu-
itively, now there is more required from the client than

2The use of callbacks switches exactly the contract parties.

before, and the client may not meet the new require-
ments). Weakening the postcondition of a method may
also break the client — the client now gets less than
before, and some of its previous assumptions may be-
come invalid. Des Rivières classified changes applied
to Java components according to their impact on the
existing clients and for some client-breaking changes
suggested appropriate solutions — workarounds [14].

In [17], Mikhajlov and Sekerinski investigated the
well-known Fragile Base Class Problem (FBCP), by
which seemingly safe modifications to a base API class
in a white-box system may cause the derived classes
to malfunction. They formally defined the conditions,
under which any change to a base class may be con-
sidered safe and prescribe a set of requirements (i.e., a
guide) of how a base class has to be defined and used
by the programmers to avoid the FBCP.

4 Further Discussion

The decision of which changes can be applied to a
framework is also influenced by the particularities
of the applied adaptation tool and technology, by
the availability and efficiency of testing, and by non-
functional requirements to the final applications.

4.1 Adaptation Recall

The range of permissible changes to the API di-
rectly depends on the adaptation recall — the ratio
of changes supported by a particular adaptation tool.
The higher the recall value is, the more changes are
(automatically) adaptable and the less restrictions on
the component evolution are implied. The developer
can then estimate the impact of other, non-adaptable
changes and either exclude them from the list of al-
lowed modifications or apply them in a controlled man-
ner. An example of the latter is how we combine
behavior-changing modifications (controlled by tests)
with the automated adaptation of refactorings (see
Sect. 2.1.2 “Verified Semantics”).

4.2 Adaptation Verification

The soundness of generated adapters needs to be veri-
fied either statically by a program verifier, at run-time
by a test suite, or by their combination. The concrete
decision is itself driven by the adaptation technology.
For example, in our approach we rely on the work of
[18], which uses the semantics of refactorings to auto-
matically test the refactored programs.

4.3 Non-Functional Requirements

Non-functional requirements, especially performance
issues, may affect the applicability of certain modi-
fications. For instance, if the adaptation of a change



implies performance overhead unacceptable for a real-
time application, this change is not permitted. In
such cases, the developer decisions are driven by
application-specific non-functional requirements and
results of the adapter benchmarking.

5 Conclusion

Although a plethora of adaptation technologies to
compensate for component upgrade exists, the adap-
tation alone does not suffice to guarantee backward-
compatibility of evolving components. In addition,
the developers must be guided in the way they modify
components to avoid potential incompatibilities that
cannot be coped with by adaptation. In this paper we
identified a set of such problems typical for the evo-
lution of object-oriented components and suggested,
where appropriate, corresponding solutions. The fi-
nal goal is to elaborate an adaptation-aware developer
guide — a set of instructions of how to evolve and
maintain a software component, while preserving its
backward-compatibility.
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