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Abstract
Although the API of a software framework should stay stable, in
practice it often changes during maintenance. When deploying a
new framework version such changes may invalidateplugins—
modules that used one of its previous versions. While manual plu-
gin adaptation is expensive and error-prone, automatic adaptation
demands cumbersome specifications, which the developers are re-
luctant to write and maintain. Basing on the history of structural
framework changes (refactorings), in our previous work we for-
mally defined how to automatically derive an adaptation layer that
shields plugins from framework changes. In this paper we make our
approachpractical. Two case studies of unconstrained API evolu-
tion show that our approach scales in a large number of adaptation
scenarios and comparing to other adaptation techniques. The eval-
uation of our logic-based tool ComeBack! demonstrates that it can
adapt efficiently most of the problem-causing API refactorings.

Categories and Subject DescriptorsD.2.3 [Software Engineer-
ing]: Coding Tools and Techniques—Object-oriented program-
ming; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and reengi-
neering; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Experimentation, Design, Languages

Keywords Frameworks, maintenance, adaptation, refactoring

1. Introduction
A software framework is a software component that embodies a
skeleton solution for a family of related software products and
is instantiated by modules containing custom code (plugins) [23].
Frameworks are software artifacts, which evolve considerably due
to new or changed requirements, bug fixing, or quality improve-
ment. If changes affect framework’s Application Programming In-
terface (API), they may bebackward-incompatibleand invalidate
existing plugins; that is, plugin sources cannot be recompiled or
plugin binaries cannot be linked and run with a new framework
release. When upgrading to a new framework version, developers
are forced to either manually adapt plugins or write update patches.
Both tasks are usually error-prone and expensive, the costs often
becoming unacceptable in case of large and complex frameworks.
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To reduce the costs of component upgrade, a number of tech-
niques propose to, at least partially, automate component adapta-
tion [11, 13, 24, 30, 31, 41]. Most of them rely on and require ad-
ditional adaptation specifications or annotations, which are used to
intrusively update components’ sources or binaries. In reality, de-
velopers are reluctant to write such specifications. Moreover, com-
ponent evolution unavoidably demands tomaintainthese specifica-
tions, because evolutionary changes may alter component parts on
which existing specifications rely, rendering the latter useless. In
such cases, specifications must be updated correspondingly along
with the change of the involved components, which raises the com-
plexity and costs of component adaptation. Finally, intrusive up-
grade of components may be impossible at all if their sources are
unavailable or software licenses forbid their change.

Instead of directly upgrading plugins, we suggest toprotect
them from framework API changes by providing binary adapter
layers that translate between the plugin and the latest framework
version. The adapters [21] mimic the public types of the old frame-
work version, while delegating to the types of the latest version.
Our approach is based on the fact that, according to the case stud-
ies of Dig and Johnson [16], more than 80% of the application-
breaking backward-incompatible changes in evolving frameworks
are refactorings—behavior-preserving source transformations [29].
Common examples of refactorings include renaming classes and
members to better reflect their meaning, moving members to de-
crease coupling and increase cohesion, adding new and removing
unused members. Figure 1 shows the application of theExtract-
Subclass refactoring to a framework class modeling network
nodes.1 If an existing plugin classLAN calling the methodbroad-
caston an instance ofNodeis not available for update, it will fail
to both recompile and link with the newNodeversion.

We treat refactorings as formal specifications of syntactic
changes and use their trace to automatically derive adapters be-

1 Our examples are inspired by the LAN simulation lab [7].

ExtractSubclassNode

void broadcast(String msg)
String getName()

Framework Version 1

Node

String getName()

Workstation

void broadcast(String msg)

LAN

void enter(Node node){
node.broadcast(node.getName()+

“enters the network“);
}

Plugin Version 1

use
use

Framework Version 2

Figure 1. Broken plugin. The methodbroadcastis moved from
Nodeto its new subclassWorkstationand cannot be located from
LAN.
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Figure 2. Refactoring-based plugin adaptation. In the upper part,
the framework versionF1 is deployed to the user, who creates a
pluginP1. Later, two new framework versions are released, withF3

as the latest one. While new plugins (P3) are developed against the
latest version, existing ones (P1 andP2) are preserved by creating
adapter layersAL1 andAL2 (the lower part).

fore upgrading a framework (Fig. 2). The refactoring information
required can be logged automatically (e.g., as Command objects
in Eclipse [5]), or harvested semi-automatically [17, 39] and thus
does not require additional specifications for most of the problem-
causing changes [16] from developers. Our adaptation technol-
ogy is not limited to consecutive framework versions: adapters can
be generated for any of the previous framework versions. More-
over, the adapted plugins of different versions may co-exist and
simultaneously use the latest framework version (side-by-side ex-
ecution[10]), because each of them is provided with its version-
specific adapter layer. In addition, adapters are optimized in that
they are not stacked on top of each other; each adaptation layer
delegates directly to the latest framework version reducing the per-
formance penalties implied by delegation.

To ensure the soundness of our adaptation (no potentially break-
ing changes propagate to plugins), in our previous work [32] we
proposed arigorousplugin adaptation. We achieved soundness by
formally defining the process of refactoring-based adapter deriva-
tion and proving that the resulting adapters do not change visible
framework behavior, while compensating for API refactorings.

This paper discusses how we make our rigorous adaptation
also practical by supporting refactoring-based binary-compatible
upgrade of Java and .NET frameworks. Its main contributions are:

• Re-exploration of plugin-breaking API changes. To assess
the feasibility and forsee the frontiers of refactoring-based
adaptation we perform two case studies, in which developers
are not restricted in how they evolve frameworks. Although
in general such development may decrease the probability of
refactorings, we show that when developers intend to improve
the framework, most of API changes can be seen as refactor-
ings. As another result of the case studies, we classify problem-
causing API refactorings by the mechanics of the problems
introduced.

• Technology realization and delimitation. We realize our
technology in a rule-based tool ComeBack! designed to be
platform-independent and easily combinable with other tools
(e.g., for acquiring refactoring information). We support adap-

tation of both black- and white-box frameworks, also in the
presence of callbacks typical for the latter. Our adapters are
fairly efficient (at most 6.5% performance overhead implied by
delegation) and preserve object identity. To support side-by-
side plugin execution we developed dedicated linking policies
in Java and .NET. Finally, we delimit the applicability of our
approach by discussing the cases, when we either cannot adapt
or require additional means for adaptation.

We discuss the case studies in Sect. 2, continue with the back-
ground of our rigorous refactoring-based adaptation in Sect. 3,
elaborate on technology realization and limitations in Sect. 4 and
Sect. 5, overview related work in Sect. 6, conclude the paper and
outline future work in Sect. 7.

2. Re-Exploring Plugin-Breaking API Changes
The applicability of refactoring-based adaptation depends directly
on the ratio of refactorings in the API evolution. To estimate the
impact of framework refactorings on existing applications, Dig and
Johnson [16] investigated the evolution of five big frameworks
(e.g., Eclipse [5]). They discovered that most (from 81% up to
97%) plugin-breaking changes were refactorings. Since plugins are
usually developed by third-party companies, they are not available
for analysis and update at the time of framework refactoring.

Could one expect the change pattern discovered by Dig and
Johnson to be similar in case of other evolving frameworks and
thus anticipate the general feasibility of refactoring-based adapta-
tion? To an extent, Dig attempts to answer this question, stipulating
that “most API breaking changes are small structural changes [. . .]
because large scale changes lead to clients abandoning the com-
ponent. For a component to stay alive, it should change through a
series of rather small steps, mostly refactorings.” [15, pp. 33–34] In
other words, if the framework developers are concerned with back-
ward compatibility (and usually they are), they are likely to evolve
the framework API through small changes, especially refactorings.

However, as an evolutionary activity,2 maintenance often con-
flicts with preserving backward compatibility. Framework devel-
opers usually face a tradeoff between updating the framework’s
API and not breaking existing plugins. The degree to which back-
ward compatibility must be preserved dictates the range of allowed
API changes and varies depending on the development policies.
To which extent can maintenance changes by themselves (not re-
stricted by compatibility preservation) be modeled as refactorings?
By answering this question we should be able to reason about the
general feasibility of refactoring-based adaptation. Should unre-
stricted maintenance resemble the change pattern reported by Dig
and Johnson, we could stipulate its occurrence in a large number of
frameworks. We address this question by performing twocritical
case studies.

According to Yin [42, p. 38], a case study is critical if its unique
conditions permit its results to be generalized (with a certain degree
of probability) to a larger number of cases. The conditions are either
in favor of or against the occurrence of a certain phenomenon under
investigation. In the former case, the study results may be used to
disprove the stipulated research statement: if it does not hold in fa-
vorable circumstances, it will not hold in general. In the latter case,
the results are used to validate the statement: if it holds in unfavor-
able circumstances, it will hold in general. Arguably, framework
maintenance that ignores backward compatibility implies unfavor-
able circumstances for refactorings to occur. Not being afraid of
“clients abandoning the component,” framework developers might
not refrain from changing the framework API in a more drastic way.

2 According to Lehman [26] we consider software maintenance a form of
evolution.



Framework Versions Applications Coverage
JHotDraw 5.2, 6.0, 7.0 4 (sample) 36% (15%)
SalesPoint 1.0, 2.0, 3.1 3 (student labs) 18% (21%)

Table 1. Frameworks selected for the case studies. Coverage re-
flects the usage of API classes (in parentheses, of methods) by the
most advanced application selected.

If the results of such case study are similar to the ones reported
by [16], we could expect the broad applicability of refactoring-
based adaptation. Otherwise, we should at least be able to reason
about the circumstances in which refactorings are less probable.

Study setup.We chose two open source Java frameworks with
at least three major versions released (Table 1). The developers of
both frameworks were never restricted in changing the framework
API and performed all intended changes. For the first case study
we used JHotDraw [6]—a well-known white-box framework for
developing 2D structured editors. We used its three framework ver-
sions 5.2, 6.0 and 7.0 that JHotDraw developers confirmed to be
evolved without preserving backward compatibility.3 For the sec-
ond case study we used SalesPoint [8] (versions 1.0, 2.0 and 3.1)
developed at our department for teaching framework technologies.
The framework models a purchase-selling business model with as-
sociated concepts, such as customer, shop, and catalog. Because
one of the investigators has been directly involved in the develop-
ment of SalesPoint, we can affirm that backward compatibility was
never considered.

Because the change log of JHotDraw was too coarse-grained
(most of the changes were undocumented) and there was no change
log for SalesPoint, we had to performapplication-drivenchange
discovery. That is, we gradually reconstructed the change history
of the framework by manually adapting the plugins of applications
developed with the first major framework version to compile and
run with the second and third framework versions. Whenever pos-
sible, such adaptation was performed by refactoring. For JHotDraw
we used four sample clients (JavaDraw, Pert, Net and Nothing) de-
livered with the framework version 5.2. For SalesPoint we used
two applications (student exercises) developed with the framework
version 1.0 and another one developed with version 2.0.

For each breaking change detected we analyzed why it was
applied by developers. In such a way we discovered exactly the
backward-incompatible framework changes affecting the chosen
applications and, if possible, modeled those changes as refactor-
ings. Admittedly, we could not detect all breaking changes of the
framework, because each application only used a subset of the
framework API. Moreover, the same framework change could be
detected repeatedly in different applications. However, our aim was
not to find the total number of changes, but rather to understand
why and how problem-causing changes occurred and to which ex-
tent they could be modeled as refactorings.

Results.We were not able to adapt JHotDraw sample applica-
tions to use the framework version 7.0. According to the documen-
tation of JHotDraw (packed together with release 7.0.9), this ver-
sion “is a major departure from previous versions of JHotDraw—
only the cornerstones of the original architecture remain. The API
and almost every part of the implementation have been reworked
to take advantage of the Java SE 5.0 platform.” Even for the small-
est sample application of 63 LoC its recompilation produced more
than 60 errors, most of which could not be adapted manually.

3 JHotDraw Developer Forum:http://sourceforge.net/forum/
forum.php?thread_id=2121342&forum_id=39886

Change intent JHotDraw SalesPoint
5.2→ 6.0 1.0→ 2.0 2.0→ 3.1

Shift of responsibility 0 34 (30) 1(0)
Concept addition 0 23 (23) 1 (1)
Concept refinement 8 (4) 94 (74) 3 (3)
Eliminating dupli-
cated functionality

0 6 (6) 14 (11)

Refactoring to pat-
terns

29 (29) 5 (5) 0

Language evolution 0 3 (2) 0

Table 2. Types of plugin-breaking API changes by their intent. For
each type the overall number of changes detected (in parentheses,
of refactorings) is specified.

The results for the other JHotDraw and two SalesPoint versions
are summarized in Table 2.4

• Shift of responsibility. Several changes in SalesPoint shifted
responsibilities among API classes. For instance, in SalesPoint
1.0 eachCatalogis saved separately; in SalesPoint 2.0 all cata-
logs must be attached to aShopthat is responsible for saving.

Such responsibility reallocation could usually be modeled as
refactorings (e.g., moving methodsave() from SalesPointto
Shop) combined with changes ofprotocols(i.e., message ex-
change [9]) between the framework and plugins. Although typ-
ically not affecting the actual framework functionality (e.g.,
ability to store catalogs), protocol changes introduce per-
muted message sequences, surplus, or absence of messages
between communication parties [12]. In the example of Sales-
Point, the protocol change is the absence of the method call
to Shop.attach(Catalog)attaching catalogs before storing the
whole shop.

• Concept addition.Adding a new API concept usually implied
a set of additive refactorings crosscutting the API. In SalesPoint
2.0 introducing the concept of a shopping cart involved creating
an API classDataBasket, adding it as a formal parameter to six
existing methods, creating an exception type to control that a
cart is named correctly, and adding a new method to handle that
exception. All these changes could be modeled as refactorings.

• Concept refinement.Several previously existing API concepts
were refined to better reflect their semantics and extend their
specific functionality. This implied, for instance, renaming
methods to better reflect their meaning and extracting inter-
faces to separate them from implementing classes. In other
cases, refinement implied changing from Java built-in types to
framework-specific user-defined types. For example, in Sales-
Point 2.0 a new classNumberValuemodeling all kinds of nu-
merical values replaced plain (string and integer) method pa-
rameters and return values of existing methods dealing with
such values. In JHotDraw 6.0 the JavaEnumerationwas re-
placed by the framework-specificFigureEnumerationthat en-
abled further addition of concept-specific methods (e.g.,has-
NextFigure()). Although we were able to compensate for this
change, we did not consider it a refactoring, because of the lack
of semantics of such transformations.

An advanced case going beyond refactorings was replacing one
SalesPoint concept with a completely different one with richer
functionality. In SalesPoint 1.0 the concept of transaction was
modeled byTransaction—a thread that could be suspended and
resumed. In SalesPoint 2.0 it was replaced bySaleProcessto

4 The protocol of case studies including detailed statisticsis available at
http://comeback.sourceforge.net/protocol.pdf.



explicitly model a state machine with states (Gate) and tran-
sitions (Transition). Adaptation required “dissecting”Transac-
tion to make its states and transitions explicit for the new state
machine and involved a number of refactorings and non-trivial
protocol changes.

• Eliminating duplicated functionality. In SalesPoint 2.0 the
classUser serves authentication and authorization, while its
subclassCustomermimics the real presence of a customer in
a shop at a given point of sale. In the next framework release,
since its developers realized that almost all functionality of
Customerexists in classSalesPoint, they removedCustomer.
All changes involved in adapting plugins but one could be
modeled as refactoring to call the (semantically equivalent)
methods inSalesPoint; the exception was a protocol change to
call a sequence of three methods instead of one initial method.

• Refactoring to patterns. ClassMenuSheetof SalesPoint 2.0
was restructured to follow the Composite pattern—a refactoring
to pattern [25] that involved a set of refactorings to participating
types, such as class and method addition, method rename and
generalization of argument types.

• Language evolution.In SalesPoint 2.0 the parameter type of
the FormSheetconstructor changed fromPanel of AWT to
JComponentof Swing. This change was visible in the API
and could not be considered refactoring. Contrary, changing
Catalog to collect its items in aMap (JDK 1.2) instead of a
Dictionary (JDK 1.0) was encapsulated and reflected in the API
as two refactorings ofCatalog’s methods (e.g., fromkeys()to
keySet()).

Discussion.Although backward compatibility was not consid-
ered, our pattern of changes discovered (about 85% consisting of
refactorings) repeated the pattern reported by Dig and Johnson for
more conventional framework evolution. Maintaining a framework
means restructuring it in the first place, and it is this restructuring
that often affects existing applications. Most of the other changes
are usually additive and do not break existing plugins. Even if con-
siderably changing framework’s API (e.g., replacingTransaction
by SalesProcess), developers first analyze existing implementation.
Consciously or unconsciously they perform a mental restructur-
ing of the old design and reuse existing design decisions. Whether
the new implementation partially reuses existing code or is written
from scratch, this mental restructuring boils down to code that can
often be modeled as the refactored old implementation. In other
words, because software maintenance requires good understanding
of existing systems, developers think in terms of restructuring and
extending existing concepts, even when applying complex changes.

The transition of JHotDraw from 6.0 to 7.0 does not contradict
our statement, because it is a case of systemreplacementand not
of systemmaintenance[35, pp. 6–7]. Arguably, although develop-
ers possess knowledge about the framework being replaced, they
develop the concepts and the whole architecture of the replacement
system from scratch without mentally restructuring existing design.
For such situations refactoring-based adaptation is not feasible.

One could argue that the ratio of refactorings applied depends
on how the system architecture is affected: the more of it is changed
the less is the probability of refactorings. However, Tokuda and
Batory [38] show that even large architectural changes can be
achieved by applying a sequence of refactorings. More important is
the driving force of the change: if developers want to improve the
system (and not replace it, for example), their changes are likely to
be refactorings.

We must admit that our results are not ripe to stronger postulate
a general feasibility of refactoring-based adaptation. Possibly, there
is a number of frameworks for which their maintenance does not re-
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void debug(Node node){
Log.write(node.getName());

}
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Node

String getName()

LAN

Node n = new SecureNode();
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utils.debug(n);
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use
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SecureNode

//encryption info
String getDescription()
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Figure 3. Before Method Capture. Node info debugged correctly.

peat the pattern of refactorings discovered. For example, compared
to a mature framework, a “young” framework in an early phase of
development may evolve in a more drastic way. The APIs of certain
frameworks (e.g., Web frameworks) typically expose many built-in
types, the changes of which (when upgrading the implementation
language) are not encapsulated and cannot be modeled as refac-
torings. Because we did not know the details of the development
process (e.g., how Eclipse was used to evolve the frameworks), we
could not estimate the impact of using an IDE’s refactoring engine
on the ratio of refactorings discovered.

However, what makes us optimistic is the fact that our re-
sults were obtained in critical case studies. Preserving backward
compatibility will furthermore increase the probability of refac-
toring. Breaking changes applied otherwise in unrestricted API
maintenance will be avoided to the greatest extent possible. Even
more important, maintaining backward compatibility dictates a cer-
tain, “smooth” way of API evolution, when the transition between
framework releases (e.g., in Eclipse) is supported by adapters to
translate from the old to the new API. In such cases, most API
changes are small enabling refactoring-based adaptation.

Classification of Plugin-Breaking API Refactorings

While performing the case studies we noticed that plugin-breaking
API refactorings differed in the mechanics of the problem they in-
troduced. In general, after refactoring the framework’s API, certain
functionality cannot be found by a caller (i.e., the framework in
case of callback types, or plugins otherwise) because of:

• Misplaced functionality. Required functionality exists, but
cannot be located by the compiler or the linker or both. Ex-
amples are changing method signatures, moving methods, and
renaming classes. Such changes lead to thesyntactic mismatch
[12] between the framework and plugins.

• Missing functionality. Required functionality does not exist:
either it was removed (e.g., deleting a framework method)
or has not been introduced yet (e.g., adding an abstract hook
method for which no implementation in plugins exists). The
latter case is also known as Unimplemented Method [37].

• Unintended functionality. Found functionality is not the one
intended. In the presence of dynamic linking, new methods
added to framework classes may be overridden accidentally by
existing methods of plugin subclasses—the so-called Method
Capture problem [37]. Consider classSecureNodeof plugin
version 1 that subclassesNodeof the framework (Fig. 2) and en-
crypts/decrypts messages. Its methodgetDescription()returns
the details of the encryption strategy used. TheLAN class of
the plugin uses the framework’sUtils class to debug node info.
In the next framework version (Fig. 2), developers add a hook
method toNodeallowing its subclasses to include node-specific



Utils

void debug(Node node){
Log.write(node.getDescription());
}

Framework Version 2
Node

String getName()
//node info
String getDescription(){
this.getName();

}

LAN

Node n = new SecureNode();
...
utils.debug(n);

Plugin Version 1

use

use

SecureNode

//encryption info
String getDescription()

use

Figure 4. After Method Capture. Instead of node info, forSecure-
Nodeits encryption description is unintentionally retrieved.

information in the description. By default, this hook method
(accidentally calledgetDescription()) delegates togetName(),
that is, the two are semantically equivalent. In addition, frame-
work developers refactorUtils to callgetDescription(). Now the
LAN’s call to Utils.debug()with the instance ofSecureNode
will produce unexpected behavior, logging the description of
the encryption algorithm and not of the node.
In general, any refactoring introducing new or changing exist-
ing classes and methods (e.g., adding and extracting methods,
changing method signatures, moving methods) may lead to the
well-known Fragile Base Class Problem (FBCP) [28], by which
apparently safe modifications to a base API class in a white-box
system may cause the derived classes to malfunction.

3. Background on Rigorous Refactoring-Based
Adaptation

To automatically construct adapters compensating for API refac-
torings and ensure their soundness, in [32] we formally define our
refactoring-based adaptation. Effectively, we roll back the changes
introduced by framework refactorings by executing their inverses.
We cannot inverse directly on framework types, because we want
plugins to use the latest, improved framework. Instead, we create
adapters (one for each framework API type) and then inverse refac-
torings on adapters. We call these inversescomebacks.

Technically, a comeback is realized in terms of refactoring op-
erators executed on adapters. It is defined as a template solution
and instantiated to an executable specification by re-using param-
eters of the corresponding refactoring. For some refactorings, the
corresponding comebacks are simple and implemented using a sin-
gle refactoring. For example, the comeback that corresponds to
the refactoringRenameClass(name, newName) renames the
adapter to the old name. As another example, the comeback of
AddClass is defined byRemoveClass removing the adapter.
The comebacks of other refactorings consist of sequences of refac-
torings. For instance, the comeback ofPushDownMethod is de-
fined by theDeleteMethod andAddMethod refactorings, the
sequential execution of which effectively moves (pushes up) the
method between adapters. Moreover, complex comebacks may be
defined by composing other, more primitive comebacks. For exam-
ple, the comeback ofExtractSubclass is defined by combin-
ing the comebacks ofPushDownMethod andAddClass.

In practice, we focus on the adaptation of user-defined API
types (e.g.,Node). Figure 5 shows the workflow of refactoring-
based plugin adaptation performed before upgrading a framework
to the versionFn. First, we create the adaptation layerALn (the
right part of the figure). For each user-defined API class of the lat-
est framework version we provide an adapter class with exactly
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Figure 5. Adaptation workflow. To a set of refactorings (r1–r4)
between two framework versions (Fn−1, Fn) correspond come-
backs (c1–c4). Comebacks are executed on the adaptation layer
ALn backwards to the framework refactorings. The resulting adap-
tation layerALn−1 delegates to the new framework, while adapt-
ing plugins of versionPn−1.

the same name and set of method signatures. Each adapter del-
egates to its corresponding framework class, which becomes the
adapter’s delegatee. Once the adapters ofALn are created, the ac-
tual adaptation is performed by executing comebacks derived using
the description of the corresponding refactorings. The comebacks
are executedbackwards, that is, starting with the one for the last
refactoring and continuing in the reverse order of the initial refac-
toring execution. When all comebacks for the refactorings recorded
between the last and the previous framework versionFn−1 are ex-
ecuted, the produced adaptation layerALn−1 reconstructs the API
of Fn−1, while delegating to the newest framework version. The
framework versions need not be consecutive: given version num-
ber Fn−2 and the refactoring history betweenFn−2 andFn, the
adapter layerALn−2 delegating toFn will be derived in the same
manner.

4. Practical Refactoring-Based Adaptation
We are implementing our adaptation tool ComeBack! [3] using
a Prolog logic programming engine. For a number of common
refactorings we provide a comeback library consisting of the cor-
responding comeback transformations specified as Prolog rules.
Given the latest framework binaries, the information about the
API types (type and method names, method signatures, inheri-
tance relations) is parsed into a Prolog fact base. To support Java
and .NET binaries we developed the corresponding Prolog/Java
and Prolog/CIL parsers. After examining the history of framework
refactorings, the corresponding comebacks are loaded into the en-
gine and executed on the fact base as described in Sect. 3. Once
all comebacks have been executed, the fact base contains the infor-
mation necessary for generating adapters (it describes the adapters)
and is serialized to the adapter binaries using reflection in .NET
and the ASM code generation library [1] in Java. Thereby we ex-
tract and transform the information about the program and not the
program itself; the adapter generation using this information is the
final step.

4.1 Insights into Binary Adapters

To ensure type safeness in the presence of adapters, we perform
exhaustive adaptation, that is, every (user-defined) API type of the
latest framework version is wrapped into its corresponding adapter
and there is no standard way for a plugin to bypass the adaptation
layer. An important implication is that at run-time plugins cannot
observe any framework type (e.g., returned by a method call) and
the framework cannot observe any plugin type (e.g., a callback):
in their communication both parties use only adapter and built-in
types. This is achieved bywrapping and unwrappingof frame-
work types inside adapters. For method calls on ordinary (non-



comeback) types, adapters internally wrap (adapt) all user-defined
method return values before sending them to plugins and unwrap
(adapted) method arguments before sending them to the frame-
work. For callbacks and extended framework classes, the opposite
way of wrapping/unwrapping is performed. Since exception types
also represent a (possible) return type, they are wrapped similarly.

The pseudocode of Listing 1 summarizes the (simplified) al-
gorithm used for wrapping and unwrapping of types. The full al-
gorithm coping with collections, arrays and exception chaining is
available on the tool’s homepage [3]. The helper functions used are:

• isAdapter(Object) checks whether the given object is an
adapter. The type information needed is added as annotations
(callingClass.isAnnotationPresent(Class)in Java or addingat-
tributesin .NET) when generating adapters.

• isUserDefined(Class) checks whether the given class is
defined in the framework. If not, it is considered to be a built-in
type. A special handling is required for third-party libraries not
subject to adaptation (currently not supported).

• wrap(Object) replaces the given object with an instance
of its corresponding adapter. It retrieves the corresponding
adapter, if any, from the adapter cache, or creates a new one
otherwise.

• unwrap(Adapter) is a placeholder for an access (either
via a method call or via direct field access) to the adapter’s
delegation variable.

Listing 1 Anatomy of a delegating adapter method.

<AccessModifier> <ReturnType> Name(Parameters) {
//(un-)wrap the arguments
foreach (argument in Parameters) {

if (argument != null) {
if (isAdapter(argument)) {
unwrap(argument);

} else if (isUserDefined(argument)) {
wrap(argument);

}
}

}

Object value;
try { //cast to issue non-virtual call (.NET)

//otherwise, use reflection (Java)
value = ((TargetType)delegatee).Name(arguments);

} catch(Throwable t) {
//(un-)wrap the exception object
if (isUserDefined(t)) {
AdaptedThrowable at = wrap(t);
throw at;

} else if (isAdapter(t)) {
t = unwrap(t);
throw t;

} else {
throw t;

}
}

//(un-)wrap the return value
if (value != null) {

if (isAdapter(value)) {
value = unwrap(value);

} else if (isUserDefined(value)) {
value = wrap(value);

}
}
return value;

}

Framework Version 2

use

Utils

void debugNode(Node node)

Utils

void debug(Node node)

Adapter Version 1

LAN

utils.debug(node);

Plugin Version 1

use

Figure 6. Black-box Class Adaptation.

Adapter structure is influenced by the way framework types are
reused. In black-box reuse,classadapters are merely reconstructed
old classes that forward methods to new framework classes (Fig. 6).
In white-box reuse, class adapters must also access the plugins’
overriding implementation, while avoiding FBCP problems dis-
cussed on page 5. Figure 7 shows the adapter for the framework’s
Nodeclass of our running LAN example. The adapter consists of
two classes: publicNodeto serve as the superclass for plugin sub-
classes and internalNodeDispatcherto dynamically dispatch on
plugin’s overriding methods called from the framework. Whenever
an instance of aNode’s subclass (e.g.,SecureNode) is passed to the
framework, it is wrapped intoNodeDispatcher. The latter investi-
gates the plugin and, depending on what methods are intentionally
overridden by the plugin, dispatches method calls either to the plu-
gin or to the framework. Method Capture (Fig. 2) is solved by the
comeback ofAddMethod deleting thegetDescription()method
fromNodeadapter; the method is no longer dynamically dispatched
to SecureNode. Since intentionally overridden hook methods ap-
pear in plugins after they appear in the framework’s API, no corre-
sponding entry exists in the refactoring log (hence, no comeback is
executed and these methods are found dynamically).

A similar adaptation strategy applies to reconstructing refac-
tored API interfaces. If a black-box framework instantiates a type

Node

String getName()
String getDescription(){
this.getName();}

Framework Version 2

Node

String getName(){
nodeDispatcher.getName();}

Adapter Version 1

NodeDispatcher

//check run-time message
//receiver and dispatch to
//adapter or framework

SecureNode

//encryption info
String getDescription()

Plugin Version 1

use

Figure 7. White-box Class Adaptation.
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Figure 8. Black-box Interface Adaptation.

implementing the interface (e.g., in a factory method) and returns it
to the plugin, the adapter wraps up the (new) framework implemen-
tation and “hides” it behind the reconstructed old interface (Fig. 8).
If, however, plugins implement the interface provided and used by
the framework (callbacktype), then the adapter reuses the plugin’s
implementation of the old interface and presents it to the frame-
work as an implementation of the actual interface (Fig. 9). As in
general we cannot derive from the API the type of use (e.g., how a
public framework class is used or which party implements an inter-
face), we generate adapters for both black- and white-box cases—
appropriate adapters are instantiated at run-time automatically in
the adapter layer depending on the call direction.

4.2 Custom Linking Policies

In our approach, all adapter layers are deployed as binary compo-
nents with exactly the same name as the framework they delegate
to. Although the framework type names are embedded in the plugin
binaries, because the names of the (old) framework and the adapter
components are the same, the dynamic linking mechanism of both
Java and .NET still works. From the point of view of a single plu-
gin, the framework upgrade is replacing one component by another
component with the same name: an old version of either the frame-
work itself or an existing adapter component is replaced with the

IPacket

Node getCreator()

Framework Version 2

PrintServer

print(packet.getCreator);

IPacket

Adapter Version 1

IPacketDispatcher

TokenPacket

Node whoCreated()

Plugin Version 1

use

Node whoCreated() Node getCreator()

use

Figure 9. White-box Interface Adaptation.

newest adapter component that uses the latest framework version.
In this regard, an important characteristic of our technology is that
it does not suffer from the so-called DLL Hell—a set of problems
that may appear when a component used by multiple applications is
replaced with another version [19]. Existing applications may stop
working if the two component versions are not binary compatible
(upgrade problem) or if the replacing version is older than the ini-
tial one (downgrade problem). In our case, the former problem is
eliminated by the comeback definition and construction of binary-
compatible adapters and the latter by making adapters always use
the latest framework version.

However, as adapters can be generated for any previous frame-
work API (Fig. 2, page 2), plugins of different versionssimultane-
ouslyuse the framework either directly or through the correspond-
ing adapter components. That is, an application may encompass
plugins developed with different framework versions. Because all
adapter components and the framework have the same name (say,
F ) differing only in version numbers, we must also supportside-
by-side execution[10]—when multiple versions ofF are deployed,
any existing component has to find its “right” version ofF . In par-
ticular, the run-time system must differentiate among versions ofF

to achieve:

• linking plugins that use their corresponding adapter compo-
nents, and

• linking adaptersthat use the latest version ofF (i.e., the frame-
work itself).

Not meeting these two requirements usually results in linker errors.
In the former case, a plugin will attempt to use types or methods not
present in another version ofF . As an example of the latter, more
subtle case, assume for Fig. 6 on page 6 an adapterUtils is created
that has as its delegatee the classUtils of the latest framework
version. When the adapter type is loaded and its dependencies are
resolved, the linking mechanism of both Java and .NET will fail,
because the type of the delegation field is considered to be the
adapter and not the framework type.

In .NET the system looks for each program’s component in a
default location called the global assembly cache (GAC), where
components intended to be shared are installed. We rely on the fact
that the system is able to distinguish different versions of the same
component in the GAC, if to each component’s deployment unit
(assembly) a strong name is assigned—an encrypted label of its
four-part version number. Forlinking pluginsit is enough to sign
the adapter and to direct the binding of its plugins in an application-
specific XML configuration file that contains the version number of
the adapter assembly to be used. Forlinking adaptersthe names of
the framework types to be created inside adapters are prepended (in
CIL, at adapter generation time) the strong name of the framework
assembly.

In Java our solution is based on generating custom classloaders
and uses the fact that, since classes are identified in the Java virtual
machine by their namesand the classloader that loaded them,
classes with the same names loaded by separate classloaders can
be distinguished effectively. Forlinking pluginsthe old framework
JAR file is replaced by the generated adapter JAR file, so that
the plugin’s class path does not need to be adjusted. Forlinking
adapterseach adapter gets a custom classloader locating the latest
framework version and uses this classloader whenever an instance
of a framework type needs to be created reflectively.

4.3 Tool Evaluation

Functionality. The following refactorings are currently supported
by our tool: AddPackage, RenamePackage, MovePack-
age, AddClass, RenameClass, ExtractSuperclass,
ExtractSubclass,ExtractClass,ExtractInterface,



RenameInterface, AddMethod, RenameMethod, Move-
Method, PushDownMethod, PullUpMethod, Extract-
Method, AddParameter, RemoveParameter, AddCheck-
edException,DeleteCheckedException,AddAbstract-
HookMethod, DeleteMethod. For the latter three refactor-
ings we provide a default (empty) implementation, which can be
changed on demand.

This comeback library can adapt all refactorings discovered by
Dig and Johnson [16] (reported in detail in Dig’s dissertation [15,
p. 21]), except for moving and renaming fields. It can also adapt all
refactorings discovered in our case studies, because all API fields
of JHotDraw and SalesPoint are encapsulated.

In our case studies, we made the most advanced sample ap-
plication of JHotDraw execute with version 6.0 of the framework
and one of the student applications of SalesPoint execute with
the latest framework version. Since after our application-based
change discovery we knew exactly how the adaptation code for
all changes should look like, we used this knowledge to manually
adapt changes beyond refactorings. First, we executed all come-
backs and got the adapter fact base. Then, we augmented it with ad-
ditional facts describing how to compensate for remaining changes.
For example, theFigureEnumeratorof JHotDraw 6.0 was wrapped
into an implementation of the standardEnumeratorused in JHot-
Draw 5.2. We discuss how to automate this currently manual adap-
tation in the conclusion (Sect. 7).

Efficiency. The delegation used in our approach inevitably im-
plies performance penalties of at least one message redirection call
per method. The penalties increase when user-defined types are
present in method signatures and, hence, need to be wrapped and
unwrapped as described in Sect. 4.1. In such cases, in addition to
constructor calls and cache lookups (for wrapping) and accessor
calls (for unwrapping), time is also consumed for type investiga-
tion (i.e., isAdapter andisUserDefined). For collection types this
is especially important, because each element of a collection needs
to be investigated and possibly wrapped/unwrapped.

However, we are able to considerably reduce the performance
penalties by generation- and run-time optimizations. At generation-
time, since all final (e.g.,java.lang.String) and value (e.g.,int)
built-in types in the method signatures need no wrapping and un-
wrapping, the checking code of Listing 1 for them is not emitted de-
creasing the overhead. At runtime, we provide a fast adapter cache
(implemented as a hash map) to speed up the dynamic adapter
lookup when wrapping (and to avoid object schizophrenia, as dis-
cussed in Sect. 5). Since strong references in the adapter cache may
hinder garbage collection, we use weak references to the frame-
work objects cached and avoid thus memory leakage (i.e., unused
objects remaining in memory). Whenever a framework object and
its adapter are not used anymore they get collected automatically.
For the cache to work correctly, it is required that the methodshash-
Code()and equals()are overridden according to the rules in the
Java class documentation.

We performed the performance benchmarking under Windows
Vista 32bit on an Athlon Turion TL60 (dual core with 2GHz each,
64bit) and 2GB RAM. The measurements were obtained by sim-
ple manual code instrumentation (to print the elapsed time). For
the adapters generated in the JHotDraw case study, the overhead
reached 6.5%, because of the collection types commonly present in
method signatures. At the same time, the SalesPoint adapters im-
plied less then 4.5% of overhead. Comparing to Java, the overhead
of adapters we generated for the .NET version of SalesPoint was
10–15% less because of the more efficient way the linking policy
is implemented (Sect. 4.2).

5. Delimiting the Technology
For certain refactorings, comebacks cannot be defined because of
limitations of their execution context (i.e., adapters). For instance,
one cannot define comebacks for field refactorings, because fields
are not accessible in the adapters. In our approach, we require that
all API fields are encapsulated (accessed by get/set methods), so
that support for field refactorings is implied by the adaptation of the
corresponding accessor methods. We also cannot implement come-
backs forInlineMethod and InlineClass, which require
adaptation means (e.g., to accessthis) beyond the adapters’ mes-
sage forwarding. However, adapters suffice for the reverse refactor-
ingsExtractMethod andExtractClass.

Delegation as a reuse mechanism introducesobject schizophre-
nia [36] due to the dichotomy of the adapter and adaptee objects:
what should appear as a single object is actually broken up into
two or more, each possessing its own identity, state, and behavior.
In our case, if not handled properly, adapters may expose their own
object identity different from the corresponding framework objects
(i.e., adaptees). As mentioned in the description of thewrap func-
tion on page 6, an adapter cache guarantees that there is at most
one adapter instance for a given framework object, ensuring that a
framework object possibly referred to from multiple contexts will
always be wrapped in exactly the same adapter. So far we did not
evaluate this approach in the presence of object serialization.

Some problems may be caused by differences in the structure
of adapters containing adaptation-specific members (e.g., the dele-
gation field) and of original framework types. Assume an instance
of a framework class is serialized and then in a new framework
version the class is adapted. The default serialization mechanism
of both .NET (System.Runtime.Serializationnamespace) and Java
(java.io.Serializable) fail to restore the serialized instance due to
the structural mismatch between the adapter and the original class.
Therefore, whenever serialization is needed, a custom serialization
process has to be provided to properly initialize the adapter. In
.NET this is achieved by implementing the interfaceISerializable
and in Java by providing the private instance methodsreadObject()
andwriteObject().

These structural differences may also lead to run-time problems,
in case developers misuse reflective method calls to the frame-
work API types (e.g., by relying on the relative order of methods).
Since adapters introduce new methods (e.g., adapter constructors)
and may change the initial method order, a wrong method may get
called. In [34] we identify several cases that may potentially inval-
idate our adaptation approach and suggest appropriate solutions.

The main requirement of our approach is the availability of the
totally ordered refactoring history. For Java it comes “for free” in
Eclipse and JBuilder. We developed a query facility that reads in
and serializes the Eclipse log into a set of corresponding Prolog
facts to be re-used in ComeBack!. Since there is no similar tool
for .NET, we developed a prototypic annotation language [40] to
demarcate applied refactorings in the C# code. The task of man-
ual annotation is alleviated by a version control system that silently
assigns unique identifiers to API types and signatures and is able
to detect some refactorings automatically (e.g., class and method
rename, method move). For other refactorings (e.g., method ex-
traction, addition of method parameters) it prompts developers for
additional information. In case of framework branching, the total
order of the refactoring trace is achieved by merging separately
recorded refactorings [15, p. 76].

6. Related Work
In general, three main groups of approaches cope with component
change in case depending applications are not available for analysis
and update.



Prescription.Often the way developers should change a compo-
nent is prescribed either implicitly (e.g., implied by the program-
ming practice in general, or by some shared knowledge in a cer-
tain developer community) or in the form of best practice tutori-
als and handbooks. For instance, des Rivières enumerates which
changes of Java components will not break applications and un-
der which conditions [14]. Mikhajlov and Sekerinski [28] formally
define conditions and prescribe a set of requirements to avoid the
Fragile Base Class Problem. However, some of these requirements
(e.g., never start or stop calling a new method from an existing base
class) are too restrictive for framework evolution.

Prevention.A group of approaches relies on the use of a legacy
middleware [2, 4] or, at least, a specific communication protocol
[20, 27] to interconnect components. The middleware prevents ap-
plications from observing component changes, often in a transpar-
ent manner. However, most of the compensated changes are trivial
(additive changes), with more complex ones being prohibited by
the middleware. Moreover, such approaches imply a middleware-
dependent application development; that is, developers must use an
interface definition language and data types of the middleware and
obey its communication protocols.

Facilitation. The third group consists of approaches to distribute
the change information and facilitate the remote component up-
date. In most of the cases, component developers have to manually
provide such information either as different annotations within the
component’s source code [11, 13, 31] or in a separate specification
[24, 30, 41]. Annotations are then used by a transformation engine
to adapt the old application code. The main advantage of these ap-
proaches, also comparing to our approach, is their power: given
the required specifications, potentially any kind of change can be
adapted. However, in case of large and complex legacy applica-
tions the cumbersome task of writing specifications and adaptation
rules is expensive and error-prone. Moveover, once written, speci-
fications need to be maintained along the component evolution.

The idea of recording the refactorings applied to a software
component for their later application to the client code is the basis
of CatchUp! [22] that is able to listen for, capture and record refac-
torings applied in Eclipse. The recorded refactorings are then “re-
played” on the application code to synchronize it with the changed
component. However, the tool fails when a refactoring cannot be
played back in the application context (e.g., if the renaming of
a component method introduces conflicts with some application-
defined method). Furthermore, this intrusive way of update requires
available application sources and implies a new application version
for each component upgrade.

Instead of adapting clients, in [18] Dig et al. adapt the frame-
work (or software library). For each breaking refactoring they
define a compensating refactoring thatinlines the correspond-
ing code directly in the library. For example, forRename-
Method(oldMd, newMd) compensatesAddMethod(oldMd)
inserting the method that delegates tonewMd. Given an old library
and a refactoring trace, they execute the compensating refactorings
in the same order as the original refactorings. Effectively, instead
of putting a wrapper around the library, they give it two (the old
and the new) interfaces. Similarly to our approach, object identities
are preserved and the side-by-side execution is supported. Perfor-
mance penalties are reported to be less then 1%. Moreover, having
access to the old implementation they can recover deleted methods.
However, their adaptation does not handle refactorings contradict-
ing each other in the scope of a class (e.g. deleting a methodM
and then renaming another one toM). Moreover, their implemen-
tation is Java-centric, cannot be re-used for other languages and
supports only several refactorings (e.g., no interface refactorings).
In addition, the tool cannot cope with the FBCP (Sect. 2). Finally,

the compensating refactorings are defined ad hoc, implementation-
specific, and not formally validated.

7. Conclusions and Future Work
We stipulate that treating refactoring as a specification of syntactic
changes it is possible to support sound and practical adaptation of
most of the problem-causing API changes. In this paper we discuss
how our refactoring-based adaptation scales. In two case studies of
unconstrained API evolution we show that, when developers want
to improve the framework, most of their changes are refactorings.
For certain API changes breaking plugins of white-box frameworks
with dynamic linking we argue that our adapter-based approach is a
more appropriate short-term solution than invasive adaptation. On
the long run, if it is possible to carefully analyze, update, and test
plugins, one could switch to invasive adaptation.

The binary adaptation performed by our tool ComeBack! is ef-
ficient and unobtrusive for existing plugins: they need neither man-
ual adaptation nor recompilation. It is also undemanding by allevi-
ating the process of writing and maintaining adaptation specifica-
tions. Moreover, the refactoring-based adaptation not only reduces
the costs and improves the quality of framework upgrade but also
relaxes the constraints on the permitted API changes allowing for
more appropriate framework evolution.

We will extend our tool by combining it with protocol adapta-
tion [33]: given a valid protocol adaptation specification, it is con-
verted into corresponding facts and rules inside ComeBack! that
generate the adaptation code.
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