JAVA CLASS LOADING IN COMEBACK!

MICHAEL RUDOLF
VERSION 0.4, 2009-04-13

Class loading in Java is not a trivial issue, and creating cus-
tom class loaders is a delicate endeavour, where subtle mistakes
can have an enormous impact on functionality. In our Come-
Back!* project we use the ASM? library to generate a custom
class loader. This document will describe the reason for that and
the inner workings of this class loader.

Version History

Version Date Changes

0.1 2007-12-08 Initial version

0.2 2008-06—23 Changed formatting
0.3 2008-07-09 Improved figures

0.4 2009-04-13 Described class sharing
Introduction

Usually, when creating a small-scale application in Java, develop-
ers do not get into contact with class loading intricacies. However,
even with a simple program there is a complete infrastructure un-
derneath, making sure that it runs at all. Whenever a Java applica-
tion is about to be started, the Java Virtual Machine prepares a class
loader hierarchy similar to the one shown in Fig. 1. At the top there
is the so-called bootstrap class loader, reigning over all classes in the
standard library, which are assembled in the file rt . jar in the 1ib
subdirectory of the Java installation directory. Beneath it is the exten-
sion class loader, which provides access to all classes in Java platform
extensions. Finally, the system class loader will load classes from the
classpath as specified when starting the Java application.

Every class loader, except the bootstrap class loader, has a parent
class loader associated with it. This relationship is shown by solid
black arrows in the figures. Whenever a class is requested from a
class loader, it first checks whether it already has been loaded by
calling the method findLoadedClass. This method performs a
lookup in a local cache, which contains all classes defined by the class
loader. If the requested class is not in the cache, the class loader asks
its parent class loader to load it. Only if the parent class loader is
not able to load the class, the class loader itself tries to load it. This
mechanism ensures that classes are loaded by the class loader nearest
to the root of the tree and that class loaders only load those classes
they are responsible for. If this parent-first approach is not used, the
same class could be loaded by multiple class loaders resulting in
different objects representing it. This is explained in the section 5.3,

"http://comeback.sourceforge.net/

http://asm.objectweb.org/

Bootstrap

Extension

System

$JAVA_HOME/lib/rt.jar

$JAVA_HOME /ext/ * .jar

$CLASSPATH

Figure 1: Default class loader structure and
their class locations

http://comeback.sourceforge.net/
http://asm.objectweb.org/

JAVA CLASS LOADING IN COMEBACK!

Creation and Loading, of the Java Language Specification:3

“At run time, a class or interface is determined not by its
name alone, but by a pair: its fully qualified name and its
defining class loader. Each such class or interface belongs
to a single runtime package. The runtime package of a
class or interface is determined by the package name and
defining class loader of the class or interface.”

As a consequence, casts and assignments would fail.

Our approach at class loading depends on how the application is
started, or, to be more precise, by which party. The following two
sections describe the scenarios of application startup and our corre-
sponding class loading strategy.

Plugin-Initiated Application Startup

When there is only one plugin for the framework and that plugin
contains the code to launch the application, one usually does not
call it “plugin” — although that is correct — but extension. This is
because the word “plugin” conveys the image of potentially many
different pieces of code being plugged into the framework, the latter
also being able to fulfill its purpose without any plugins at all. This
first scenario, however, describes a situation, in which the framework
is no complete application by itself and can only be used by means
of an extension (hereinafter referred to as “plugin”) providing all the
missing pieces. A simple example shall illustrate that: an application
that consists of a single Swing window is usually not thought of

as a plugin to the Swing framework, although this is exactly what

it is. The plugin part contains the application’s main method and
instantiates Swing classes to construct the window.

In this scenario the plugin provides the value of the SCLASSPATH
process environment variable, which is used for creating the system
class loader. A framework update has to change the contents of that
class path, so that it does not point to the framework anymore, but to
the adapter layer created by our ComeBack! tool instead. However,
we do not change the application startup mechanism, we just replace
files on disk. As a result, the plugin will load adapter classes after the
upgrade whenever it loaded framework classes before.

Now that the updated framework is no longer part of the plugin’s
class path, our adapter layer has to account for that by using a dedi-
cated mechanism for loading framework classes. This is achieved by
generating a special class loader as part of the adapter layer, which
is used in conjunction with reflection for accessing the framework, as
shown in Figure 2. This class loader provided by the ComeBack! tool
intentionally violates the principle of parent-first loading described in
the introduction. After checking its local cache, it first tries to load the
requested class itself, and only if that fails it turns to its parent class
loader and delegates the request up the hierarchy. The workhorse

3 Tim Lindholm and Frank Yellin. The Java

2

Virtual Machine Specification. Addison-Wesley,

21 edition, April 1999.

Bootstrap

Extension

System

\
parent-last | Reflection
/

ComeBack!

Figure 2: Plugin starts the framework

JAVA CLASS LOADING IN COMEBACK! 3

method loadClass is shown in the following listing; notice the ex-
change of lines s and » with respect to the implementation provided
in the superclass java.lang.ClassLoader.

Although it might be as simple as in the example above, the plugin
can of course also use a dedicated class loading mechanism. How-
ever, this does not affect our approach, because our generated frame-
work class loader will still be found by the adapter layer. Figure 3
shows the class loader hierarchy for this case; the plugin class loader
(the one handling the class path) is colored orange and the special
framework class loader is shown in blue.

CLASS SHARING IS REQUIRED for all administrative (i.e., non-adapter)
classes of the adapter layer, e.g., the adapter cache, the lookup facility,
and the dynamic adapter generator. Therefore, the domains of the
system (or custom plugin) class loader and the special ComeBack!
class loader have to overlap. This is ensured by having the Come-
Back! class loader check whether the name of the requested class
starts with a known shared substring. If this is the case, the class
loader that loaded the ComeBack! loader will be consulted first. As a
consequence, all adapter layer classes needed by both the system (or
custom plugin) class loader and the special ComeBack! class loader
will be loaded only once and can be accessed from both class load-
ing domains. The corresponding code is shown in the lines s—, in the
listing below.

1 protected synchronized Class<?> loadClass (String name,

2 boolean resolve) throws ClassNotFoundException {
3 //check whether the class has been loaded already

4 Class<?> ¢ = findLoadedClass (name) ;

5 if (¢ == null) {

6 for (int i = 0; i < sharedPackages.length; i++) {
7 //the class might be shared

8 if (name.startsWith (sharedPackages[i])) {

9 c = getClass () .getClassLoader () .loadClass (
10 name) ;

11 break;

12 }

13 }

14 }

15 if (¢ == null) {

16 try {

17 //we load the class ourselves

18 c = findClass (name) ;

19 } catch (ClassNotFoundException ex) {

20 //we delegate to our parent class loader

21 c = getParent () .loadClass (name, false);

22 }

23 }

24 if (resolve) {

25 //load all dependent classes

26 resolveClass(c);

27 }
28 return c;
29 }

Bootstrap

Extension

System

/ \iarent—last

Plugin ComeBack!

\
~_ 7

Reflection

Figure 3: Plugin starts the framework using a
special class loader

JAVA CLASS LOADING IN COMEBACK!

Framework-Initiated Application Startup

Many application frameworks are designed in a way, that their basic
functionality can be extended with plugins. The popular Java devel-
opment environments Eclipse* and NetBeans® are prime examples of
this architecture. Here, the framework constitutes a fully-functional
application on its own, and it loads the plugins either as part of the
startup process or later on demand. Some frameworks even support
so-called hot swapping, where plugins can be replaced by a newer
version at runtime. Naturally this requires a dedicated class load-
ing infrastructure, which will not work together with the ComeBack!
class loading approach described in the previous section. Therefore,
framework developers need to account for some things, if they want
to enable seamless framework updates with the help of our Come-
Back! tool. In the following we describe three class loading strategies
commonly encountered in this scenario and how our approach to
integrating adapter layers looks like.

No dedicated plugin class loader

In the simplest case the framework does not use any dedicated class
loader for plugins at all. Instead, all the plugins are put in the class
path together with the framework (e.g., by means of a batch or shell
script), so that they will be loaded by the system class loader. Un-
fortunately there is no way to introduce adapter layers into the class
path without changing the startup mechanism (i.e., rewriting the
mentioned scripts), which is not feasible. Therefore, we do not sup-
port this kind of architecture. Framework developers need to separate
their framework from the plugins by at least one dedicated class
loader, as discussed in the next section.

Single plugin class loader

If plugins are loaded using a dedicated class loader (e.g., fetching
plugin classes from JAR files in a special “plugin” directory), our
ComeBack! tool can be used to generate a single adapter layer for

all plugins. However, this implies that all plugins will see the same
framework version, which is reified by the adapter layer. In order for
plugins to access the adapter layer, the plugin class loader created

by the framework needs to be modified to first look for classes in

the generated adapter layer before delegating requests to its parent
(the system class loader, which is responsible for loading framework
classes from the class path). If modifying the plugin class loader is no
option, then the framework developers can also insert a special class
loader in between the plugin class loader and the system class loader,
which does not adhere to the parent-first principle similar to the

one described in the section Plugin-Initiated Application Startup. This
implementation is shown in Fig. 4, where the plugin class domain is
highlighted in yellow, the adapter layer in red, and the framework

‘http://www.eclipse.org/

5http://www.netbeans.org/

4

http://www.eclipse.org/
http://www.netbeans.org/

JAVA CLASS LOADING IN COMEBACK! 5

domain in blue. Notice that separating plugin and adapter classes
with different class loaders, we consistently separated out the colors
yellow and red from what was orange in Figs. 2 and 3.

Ome class loader per plugin

The highest degree of flexibility can be reached by loading each plu-
gin in a dedicated class loader. This permits each plugin to have its
own adapter layer thereby allowing for different plugins seeing differ-
ent framework versions. Again, each plugin class loader needs to be
retrofitted to first load adapter classes before delegating to its parent,
or a special class loader must be inserted into the hierarchy. Figure 5
depicts that class loader architecture using the same color scheme as
in the previous section.

Colophon

This document was typeset with the free, cross-platform IATEX type-
setting system using the tufte-handout package,® version 2.01,
which simulates the layout style espoused by visual design expert
Edward Rolf Tufte.

Bootstrap

Extension

System

\
) Reflection
/

Adapters

Plugin

Figure 4: The frameworks starts the only
plugin

Bootstrap

Extension

System

Reflection - / \ \ Reflection
/ \
1 \

Adapters Adapters

| |

Plugin Plugin

Figure 5: The frameworks starts all the
plugins

®http://code.google.com/p/
tufte-latex/

http://code.google.com/p/tufte-latex/
http://code.google.com/p/tufte-latex/

	Introduction
	Plugin-Initiated Application Startup
	Framework-Initiated Application Startup
	No dedicated plugin class loader
	Single plugin class loader
	One class loader per plugin

